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Abstract. Western countries rely heavily on wheat, and yield predic-
tion is crucial. Time-series deep learning models, such as Long Short
Term Memory (LSTM), have already been explored and applied to yield
prediction. Existing literature reports that they perform better than tra-
ditional Machine Learning (ML) models. However, the existing LSTM
cannot handle heterogeneous datasets (a combination of data that varies
and remains static with time). In this paper, we propose an efficient deep
learning model that can deal with heterogeneous datasets. We developed
the system architecture and applied it to the real-world dataset in the
digital agriculture area. We showed that it outperformed the existing ML
models.

Keywords: Deep-Learning Model · Digital Agriculture· Heterogeneous
Time-series Dataset· Machine Learning models · Winter Wheat Crop
Yield Prediction.

1 Introduction

Crop yield prediction is a nonlinear process and usually involves analysing several
features coming from multiple heterogeneous datasets. Time series deep learning
models like LSTM [18,19] are proven to be good models in case of time series data
however, when dealing with mixed type datasets like soil and weather, integrating
them into an LSTM model can be challenging. Also, heterogeneous datasets
may contain different types of data which would require different pre-processing
methods to be effectively used in a LSTM model. It is designed specifically to
work well only for time series datasets, however there is a need to build a system
architecture into it to incorporate the ability of handling heterogeneous datasets
more effectively.

In a LSTM model, various optimisation techniques such as gradient descent,
momentum, and Adam are most commonly used in neural networks to minimise
the error. Gradient descent [5, 18, 19, 25] is an optimisation technique which
measures the change in weights and finds the parameter values to minimise a cost

https://orcid.org/0000-0002-0756-1455
https://orcid.org/0000-0002-5702-4463
https://orcid.org/0000-0002-0176-6281


2 Yogesh Bansal , David Lillis , and M-Tahar Kechadi

function. Another approach momentum [5] incorporates the information about
gradient’s previous direction and accumulates the gradient values over time to
accelerate optimisation by introducing a new variable momentum. The Adam
approach [5, 11, 21, 23, 25] combines two parameters: momentum and adaptive
learning rate. It adjusts the learning rate dynamically based on the loss function
gradient.

While using time series deep learning models, hyper-parameters play a major
role and should be tuned for optimal performance of the model. The hyper-
parameters used in this study are epochs, learning rate, the number of hidden
units. Selecting appropriate hyper-parameters’ values is not straightforward. It
is usually based on trial and error. The LSTM optimal hyper-parameter values
depend on the specific task, dataset, complexity of the model and the amount
of training data available. In this paper, we develop a system architecture to
modify the existing LSTM model to be able to handle both time-series and non
times-series data effectively.

The paper is structured as follows: Literature is presented in Section 2, fol-
lowed by data description in Section 3. pre-processing information is provided
in Section 4, followed by “experiment setup” and “results” in Section 6 and 7,
respectively. Section 8 summarizes the study.

2 Literature

Data-driven agricultural crop yield utilizing several types of datasets, including
soil and weather has been addressed by many researchers, mainly from the agri-
culture point of view. Therefore, we focus on the studies related to crop yield
predictions using ML including deep learning approaches [3,17,22]. Hybrid mod-
els which are a combination of ML models have been proven to perform better
than individual ML models for crop yield predictions [21, 23]. The most com-
monly used deep learning models are the convolutional neural networks (CNN)
and LSTM. Mathieu et. al [12] assessed agro-climatic indices over medium and
low production areas. They concluded that agro-climatic indices can significantly
improve crop yield modelling in comparison with direct weather variables and
highlighted temperature and precipitation as the most crucial weather factors
affecting crop yield. Agro-climatic indices usually provide guidance on the types
of crops that are best suited for a particular region, as well as the optimal times
for planting and harvesting those crops. This is very important in agriculture
because by understanding the agro-climatic conditions of a particular region,
farmers can better manage their crops and improve their yields while minimis-
ing the risks associated with climate variability.

A full review of the use of machine learning models to crop management
can be found in [6]. In [10], a random forest (RF) model was used to predict
wheat production, with multiple linear regression (MLR) serving as the stan-
dard of comparison. All performance data indicate that RF outperforms MLR.
A similar study conducted by [16] compared RF, XGBoost, and KNN for crop
yield prediction on rainfall and temperature data and found that RF performed
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the best. Another study [23] use ML including neural models to estimate winter
wheat production on soil and weather data and found that neural models out-
performed other models. [7] conducted more relevant research, indicating that
RF is a superior ML predictor than other ML models.

Other studies [1, 8] utilised ensemble ML models and compared them to a
single ML model and noted that ensemble ML models align more towards making
predictions close to actual yield values. [18] introduces a model for performing
in-season soybean yield predictions utilizing Long-Short Term Memory (LSTM)
and traditional ML models on weather and satellite data.

Sun et. al [21] proposed a deep CNN-LSTM model for both end-of-season
and in-season soybean yield prediction based on county-level weather data. The
proposed CNN-LSTM model outperformed either the CNN or LSTM model in
terms of prediction performance. They assert that this form of model architec-
ture may significantly enhance yield prediction for more crops, including corn,
wheat, and potatoes. In a similar study representing hybrid models, [23] devel-
oped a LSTM-CNN to estimate winter wheat yield at the county level in Chin
using weather and remote sensing data. Results demonstrated that LSTM-CNN
enhanced the model’s yield prediction ability. In another study [11], an LSTM
model is built that combines crop phenology, weather, and remote sensing data
to predict county-level corn yields. The results showed that LSTM model out-
performed other ML methods for estimating end-of-season yield.

In one of the studies conducted in India [19], an LSTM model was proposed
to estimate agricultural yields using satellite data at the block level across many
states. The proposed strategy surpassed classical ML approaches by more than
50%. They also demonstrate that the incorporation of contextual information,
such as the location of farms, water sources, and metropolitan areas, improves
yield estimations.

[5] presented a more accurate optimiser function (IOF) and used it along
with LSTM model. The proposed model is compared to NN, RNN, and LSTM,
and the results indicate that the proposed IOF minimises training error by
addressing under-fitting and overfitting. The findings indicate that the recom-
mended IOFLSTM has the benefit of accurate crop yield prediction. The decrease
in RMSE for the proposed model implies that the proposed IOFLSTM can beat
the CNN, RNN, and LSTM when predicting crop yield.

Several strategies for estimating crop yields using soil and environmental
characteristics was explored in [9]. It compared LSTM with other ML models
and concluded that LSTM is effective in comparison to the others for all the
evaluation metrics used in the study. [2] presented the RNN-LSTM model to
estimate the wheat crop yield of India’s northern area using a 43-year benchmark
dataset and compared it with artificial neural networks, RF, and multivariate
linear regression. The performance of RNN-LSTM model came out to be much
better than the other models utilised.

Another combination of LSTM-RF framework was introduced in [20] for
forecasting wheat yield using vegetation indicators and canopy water stress in-
dices at several growth stages. In comparison to LSTM, the LSTM-RF model
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produced more accurate predictions. The findings demonstrated that LSTM-RF
evaluated both the time-series features of winter wheat development and the non-
linear characteristics between remote sensing data and crop yield data, therefore
offering an alternate method for yield prediction in contemporary agricultural
production. Regarding data pre-processing, Ngo et al. [14] utilised neighbour-
ing fields to fill in missing values for soil properties such as pH. Bansal et al. [4]
indicated the importance of weather data in crop yield predictions. They demon-
strated statistically that the addition of weather data to soil data improves yield
prediction. This study is considered as the benchmark study because of the same
dataset and same train/test splits for training and testing. The experimental re-
sults obtained from the proposed models are compared with the best-performing
ML model in this study [4].

The trend from the literature showed that for mixed-type datasets that have
geographical and temporal dimensions, researchers rely on the hybrid models
i.e., combining time-series model with either traditional ML or neural models
but there does not exist any model in the literature which could effectively
handle mixed-type datasets with geographical and temporal dimensions.

3 Data Description

The datasets utilised include soil and weather information for numerous farms
across several years. Multiple fields make up a farm, and each field is further
subdivided into zones. In the context of crop management, a "zone" refers to
a sub-region within a field [22]. Let Z be a set of zones: Z = {z1, z2, . . . , zn}.
For each zone zi by year, the following features are grouped into two categories:
soil data and weather data. The soil data has been collected from various farms
along with the weather data for those farms for 6 years i.e., 2013-2018. Moreover,
we have done significant work in organising and integrating the datasets we have
collected so far, and these were reported in [13,15]

The data on the soil comprises information regarding the results of soil testing
carried out in the agricultural zones. Because of their high cost and the fact that
the values do not change much over relatively short spans of time, these soil tests
are only performed on a very rare basis (usually every three to four years). As
we are just examining one year’s worth of data for each instance, we will assume
that the soil’s attributes will not vary dramatically over the course of this time
period and hence treat them as constants. In the event that a zone does not
have a soil test in a particular year, the soil is mapped based on the results of
the most recent test that was performed in the same zone the year before. Data
about the weather, on the other hand, is a collection of different points in time.
An instance I in the dataset can be represented as follows:

I = [Z, S,W, T, Y ] (1)

where S = {s1, s2, · · · , sx} is the set of x soil variables. W = {w1, w2, · · · , wy}
is the set of y weather variables, T is time in weeks, and Y is yield.
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In this study soil and weather data characteristics cover the period from 2013
to 2018. It includes soil nutrients (P, K, Mg), physical features (soil type, stone
content), chemical properties (organic matter, CaCO3, pH), yield for a zone, and
sowing and harvesting dates. The multiple soil type classifications in the dataset
include shallow, medium, deep clay, and deep fertile; stone content is stone-
less, low, moderate, and high; organic matter is low, moderate, and extremely
high; and CaCO3 is slightly calcium, medium calcium, high calcium, and acidic.
The weather data includes air temperature, precipitation, solar radiation, and
humidity.

4 Data pre-processing

The original soil and weather data contain discrepancies, noise, missing values,
and errors. Identifying and correcting data errors, employing feature engineering
to extract new features [24] from weather data, integrating mixed-type soil and
weather datasets, mapping soil categorical variables to numerical variables, and
filtering the integrated data from the growth period till the end of the season to
make it model-ready are all components of the data preparation process. Figure 1
illustrates the pre-processing steps used for soil and weather data.

In the case of soil data, we begin with crop, farm, and zone datasets contain-
ing zone yield information. These several datasets have been pre-processed and
integrated to create a master dataset on the soil. Winter wheat was taken from
the original soil dataset, which included a variety of other crops. Several dupli-
cate soil testing and yield values for the same zone and year were removed. Many
soil nutrient and yield data values were identified to be erroneous or unattainable
with the aid of agricultural domain experts. Those are almost certainly due to
human mistakes. These were eliminated from the data.

The mapping of soil categorical variables i.e., soil type, stone content, organic
matter, and CaCO3 is also done to numerical variables for modelling. After pre-
processing the crop, farm, and zone information, they are integrated to create a
pre-processed soil dataset. The principal component analysis (PCA) is applied
to the pre-processed soil dataset to reduce its dimensionality and further used
as a bias by the proposed deep learning model. The motivation behind using
PCA is that due to the heterogeneity and a large number of features, it extracts
the features that can be used to train our proposed deep learning models in an
efficient and compact manner. Moreover, the extracted features are uncorrelated
which are useful in eliminating multicollinearity issues in the data, and help in
improving the stability and performance of the deep learning model. A bias is a
parameter that is added to the inputs and the LSTM internal state to allow the
network to better capture the relationship between inputs and outputs.

The weather variables i.e., air temperature, precipitation, solar radiation,
and humidity are represented into weekly based features i.e., each week of all
years studied (2013–2018) according to the dynamic sowing and harvest dates
of zones/year. After pre-processing of weather data and extracting Two Agro-
climatic indices i.e., degree days, and effective growing days are fetched from
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Fig. 1: Data pre-processing

air temperature weather variables and, used with other weather attributes i.e.,
average temperature, accumulated precipitation, accumulated solar radiation,
and average humidity.

Degree days [12] are calculated as the maximum of 0 and the average of
maximum and minimum daily temperature, summed over a week. The total
number of days in a week when the average temperature is greater than 5°C is
referred to as effective growing days [12]. The average temperature is calculated
by averaging the temperature (T) over a week. The accumulated precipitation is
calculated by summing precipitation (P) over a week. Solar radiation is summed
over a week to get accumulated solar radiation. Humidity (H) is averaged over
the week to get average humidity.

After soil and weather data have been pre-processed according to weekly
based representation, data integration of weather and soil begins.

Fig. 2: Weekly-based data representation after data pre-processing
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Figure 2 illustrates the weekly-based representation i.e., 1st week, 2nd week,
..., tth week of weather data and soil data which is used as a bias for a particular
zone and year). This integrated data is further filtered from the growth period
of a zone i.e., from 17th week till the harvesting period of that zone.

5 Proposed Approach

This study presents a novel approach to handling both sequence and non-sequence
data at the same time. We develop a deep learning model to make yield predic-
tions on multiple zones which have different sowing and harvest dates. An epoch
is complete when the proposed model in this study is trained on every zone in the
dataset exactly once. The applications of classical LSTM are constrained by the
requirement that it should have a sequence, i.e., time-series data. However, when
we have a mixture of sequence and non-sequence data, a variation is required.
Thus, we propose a variant of the classical LSTM that is capable of processing
both sequence and non-sequence data. The following proposed approach entails
a description of time steps, forward and backward propagation in training, and
the steps in testing.

5.1 Training: Description of time steps

Figure 3 shows the time steps in the proposed model. Each time step represents
a week i.e., 1st time step is 1st week; 2nd time step is 2nd week; and tth time
step is tth week. Initially, at the start of 1st week, the cell state and hidden state
is initialised to 0 which gets updated at each time step based on the input and
the previous hidden state. A cell state is the memory of the LSTM which gets
updated by the other gates. A hidden state is an output that summarizes the
information from the input processed by the LSTM cells.

Fig. 3: Training Steps (Description of time steps)

Each zone has different weeks because of different sowing and harvesting
dates which means the proposed model is trained according to the weeks present
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in a particular zone. In the forward time step, weather data for each respec-
tive week along with bias which is constant over the time steps for a zone is
propagated from 1st week to tth week of that zone. After t time steps, a yield
prediction is computed which is a real number, y ∈ R. It is then compared with
the actual yield to find an absolute error for that zone.

In the backward time step, gradients of weight parameters related to only
sequence data i.e., weather data are generated. Here, the parameters are the
weights of the network, while the gradients are the derivatives of the loss func-
tion with respect to these parameters. Since non-sequence data i.e., the soil
remains constant throughout the year for a zone, it is considered as a bias and
its gradients are not computed.

5.2 Training: Description of Forward/Backward Propagation

Figure 4 illustrates the forward and backward propagation steps of a proposed
deep learning model. It is similar to LSTM architecture except where only gra-
dients of sequence weather data are computed and soil Data is inputted as bias.
This figure illustrates one LSTM cell, which corresponds to one zone in one week.
Below are the notations used:

– ft, ut, and ot represents forget, update and output gate respectively.
∫
ft,∫

ut, and
∫
ot are the respective derivatives. A forget gate determines which

information from the previous cell state should be discarded. An update gate
controls how much information from the candidate state should be added to
the cell state. An output gate determines which information from the current
cell state should be output.

– wfa, wua, and woa are the weight parameters related to the hidden state
of forget, update and output gate respectively.

∫
wfa,

∫
wua,

∫
woa are the

respective derivatives.
– wfx, wux, and wox are the weight parameters related to weather data of

forget, update and output gate respectively.
∫
wfx,

∫
wux,

∫
wox are the

respective derivatives.
– at−1, at represents previous and current hidden state. Similarly, ct−1, ct

represents previous and current cell state.
∫
at−1,

∫
at,

∫
ct−1,

∫
ct are the

respective derivatives.

The description of Forward/Backward Propagation is as follows:-

– In forward propagation, weight parameters of forget gate, update gate, can-
didate state, output gate and input comprising of weather and soil data are
propagated. Here, a candidate state updates the cell state based on the input
and the previous hidden state.

– After each time step/week/LSTM cell, cell state and hidden state are up-
dated.

– Calculate the gradients of sequence weather data only by back propagation
through time at time step t using the chain rule. No gradients of soil data
are computed during back propagation.

https://orcid.org/0000-0002-0756-1455
https://orcid.org/0000-0002-5702-4463
https://orcid.org/0000-0002-0176-6281


A Deep Learning Model for Heterogeneous Dataset Analysis 9

Fig. 4: Training (Description of Forward/Backward Propagation)

Training and Testing Figure 5 shows the training and testing steps of the
proposed approach.

The steps in the training stage are as follows:

– Firstly, we set the seed and randomly initialize the weight parameters. The
seed is set to ensure that the generated random numbers are reproducible.

– Start the outer loop for the number of epochs the proposed model is trained.
• For each epoch, there is an inner loop for the number of zones present

in the training set. For each zone, do the following:-
∗ Do a forward propagation using available parameters from 1st week

to tth week to generate yield prediction.
∗ Compute the absolute error.
∗ Do a backward propagation to generate the gradients of weight pa-

rameters of different gates. These gradients are the derivatives of the
loss function with respect to each of the parameters in the LSTM
network.

∗ The gradients obtained from the backward propagation are based
only on the sequence weather data and are used in the optimisa-
tion algorithm to adjust the model parameters during training to
minimise the loss function and improve the model’s ability to make
accurate predictions on new data. This is where the proposed deep
learning model differs from classical LSTM where there was no way
to segregate the gradients of heterogeneous data.

∗ Absolute errors for all the zones are computed.
• After the completion of an epoch, mean absolute error is computed and

the updated weight parameters are passed from the last zone of the
previous epoch to the first zone of the next epoch.



10 Yogesh Bansal , David Lillis , and M-Tahar Kechadi

– After the proposed model is trained for all the epochs, we get a training
error and the updated weight parameters will be used to evaluate the test
set.

The steps in the testing stage are as follows:

– For the test set, the updated weight parameters obtained from the trained
model are passed through forward propagation to make a yield prediction.

– Then, absolute error is calculated for a zone.
– After absolute errors for all zones are computed, the mean is taken to find

the overall mean absolute error for the test set.

Fig. 5: Training and Testing Steps

6 Experiment Setup

The data utilised in this study covers the years 2013 to 2018. We train the
proposed deep learning models from 2013 to 2017 and then test it on 2018
dataset. MAE is used as the evaluation metric.

To compare proposed deep learning models with the traditional ML mod-
els used in this study [4], we present the weather data in the same two forms:
common weather attributes (i.e., temperature, humidity, precipitation, solar ra-
diation), and agro-climatic indices (i.e., degree days, effective growing days).
Also, we consider only the growth period weeks beginning from week 17 till the
end of the season for modelling.
We have developed 3 deep learning models using the proposed approach which
are independent of each other. The first model is using gradient descent [18]
optimiser. Second model is using momentum [5] optimiser, and the third model
is using Adam [21] optimiser to predict winter wheat yield.

The learning rate is a hyper-parameter that determines the step size while
moving towards a minimum of a loss function during the training of a model.
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During the training process, the goal is to optimize the model parameters to
minimize the error between the predicted yield and the actual yield. Hidden
units are the intermediate computational units within a neural network that are
responsible for processing and transforming the input data into useful represen-
tations that can be used to make predictions. Hidden units are the nodes within
the neural network that receive input from the previous layer and perform a com-
putation on that input. More hidden units can enable the network to capture
more complex patterns in the data, but may also increase the risk of over-fitting,
while fewer hidden units may lead to underfitting and poor performance.

To find the best hyper-parameter values for our problem of yield prediction,
we performed an exhaustive hyper-parameter search for each model separately
using these specific values of hyper-parameters i.e., hidden units from 10, 20, 30,
40; learning rate from 0.001, 0.005, 0.01, 0.05; epochs from 10, 20, 30, 40, 50, 60,
70, 80, 90, 100; Though the optimal hyper-parameter values for an LSTM model
depend on the specific task and dataset, however, these are the most commonly
used by the authors in the literature who used LSTM on their specific datasets.

For each of these models separately, the proposed approach is applied to the
training dataset to get a trained deep learning model and the updated parameters
obtained from a trained model are used to make a prediction on the test set.

A comparison is made between the proposed deep learning models and the
best-performing ML model i.e., gradient boosting in this study [4]. In addition,
the proposed deep learning models are compared among themselves to deter-
mine which provides the most accurate yield prediction performance. Statistical
significance tests are also done to evaluate if the differences between the MAE
values of proposed deep learning models and gradient boosting are significant or
not.

7 Experimental Results

This section presents the results for three proposed deep learning models. a) Pro-
posed Deep Learning Model using Gradient Descent optimiser with best hyper-
parameters, b) Proposed Deep Learning Model using Momentum optimiser with
best hyper-parameters c) Proposed Deep Learning Model using Adam optimiser
with best hyper-parameters.

Table 1 shows the MAE of yield prediction in t/h by three proposed mod-
els developed in this study and the best performing traditional ML model i.e.,
Gradient Boosting from the baseline study [4]. Alongside, it also shows the sta-
tistical significance tests to measure whether the proposed models improve yield
prediction over baseline, our alternative hypothesis is that the MAE of the pro-
posed models is less than the MAE of gradient boosting in the baseline study.
Here, p-values are calculated using a one-tailed paired t-test by comparing the
absolute errors from a) proposed deep learning models and b) gradient boosting.

It is noted that each of the proposed deep learning models surpasses the yield
prediction performance of Gradient Boosting. The best set of hyper-parameter
values in the first proposed model using gradient descent optimiser is found to
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Table 1: Winter wheat yield predictions comparison of proposed deep learn-
ing model and best ML model from baseline study [4]. Best Hyper-parameters
(h=Hidden units, lr=Learning rate, e=Epochs).

Gradient Boosting
Model (MAE) -
Baseline [4]

Proposed Deep Learning Model (MAE)
Gradient Descent Momentum Adam

h=20, h=10, h=10,
lr=0.01 lr=0.005 lr=0.005
e=40 e=40 e=20

1.48 1.31 1.36 1.22
p value 3.2e−5 5.5e−6 9e−4

be h=20, lr=40, e=0.01. It gives an MAE of 1.31 t/h whereas gradient boosting
gives an MAE of 1.48 t/h.

For the second proposed model using momentum optimiser, best hyper-
parameters are found to be h=10, lr=40, e=0.005 and it gives an MAE of 1.36
t/h whereas gradient boosting gives an MAE of 1.48 t/h.

The third proposed model using Adam optimiser gives the least MAE of all
proposed models with 1.22 t/h with its best hyper-parameters as h=10, lr=20,
e=0.005 whereas gradient boosting gives an MAE of 1.48 t/h.

It is noted from the statistical significance tests that p-values for all the
proposed models are below the 5% threshold, and thus the alternative hypothesis
can be accepted. Consequently, it can be said that yield prediction performances
of proposed deep learning models are better than traditional ML models i.e.,
gradient boosting in the baseline study [4].

8 Conclusion

The purpose of the proposed deep learning models is to predict winter wheat
crop yield and determine whether it performs better than the best performing
ML model (i.e., Gradient Boosting in the baseline study [4]). We showed that
the proposed hybrid approach is able to make better yield predictions than
Gradient Boosting. Among the three proposed deep learning models, the hybrid
LSTM-Adam model returned the least MAE of 1.22 t/h on the test set, while
the gradient Boosting model returned an MAE of 1.48 t/h. Future work can
benefit from adding more feature-engineered agro-climatic indices and robust
deep learning models.
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