
Dublin Bogtrotters: Agent Herders

M. Dragone, D. Lillis, C. Muldoon, R. Tynan
R. W. Collier, and G. M. P. O’Hare

School of Computer Science and Informatics
University College Dublin

{mauro.dragone, david.lillis, conor.muldoon,
richard.tynan, rem.collier, gregory.ohare}@ucd.ie

Abstract. This paper describes an entry to the Multi-Agent Program-
ming Contest 2008. The approach employs the pre-existing Agent Fac-
tory framework and extends this framework in line with experience gained
from its use within the robotics domain.

1 Introduction

This paper outlines the approach adopted for the Dublin Bogtrotters entry in
the PROMAS Agent Programming Contest. For the purposes of the competi-
tion, we adapted the pre-existing Agent Factory (AF) framework [1, 2], making
use of our previous experience in the area of robotics [3]. As is described in
Section 3, we have developed a 2-tier hybrid agent architecture that is loosely
based on the SoSAA architecture [3]. This system is implemented using an agile
methodology [4], outlined in Section 2, that supports agile modelling and test
driven development. Some details on the strategies that were employed in the
competition are discussed in Section 4.

2 System Analysis and Design

The system was specified and designed with the SADAAM methodology [4],
which supports agile modelling and test-driven development. In this method-
ology, agile modelling is realised using a combination of Agent UML Protocol
Diagrams and customised UML Case Diagrams and Activity Diagrams. As is
usual in such methodologies, rather than deliver a comprehensive system design,
we used our design notation only as a mechanism to clarify how certain core sys-
tem features were implemented. SADAAM was chosen because it has previously
been used in conjunction with AF to develop agent-based systems.

3 Software Architecture

The overall system architecture (figure 1 is oriented around a core set of herder
agents, that are supported by a number of ancillary agents, including: a herd



Fig. 1. Bogtrotter System (Left) and Hybrid Agent Architecture (Right)

manager agent that was responsible for creating herders and allocating user-
names to them; a health agent, that monitored the health of other agents (see
Section 4); and a strategy agent that oversaw potential strategies.

While all of the ancillary agents were implemented using only the Agent Fac-
tory Agent Programming Language (AFAPL) [5], the core herder agents were
implemented using a hybrid agent architecture that is inspired by the SoSAA
robot software framework [3]. This framework advocates the adoption of a two-
tier architecture for robotic systems that combines an intentional multi-agent
system with a low-level component-based infrastructure. The idea behind this
approach is that the upper agent layer enhances the lower-level mechanisms by
way of their intentional reasoning abilities and support for multi-agent organi-
sation. For instance, agents can negotiate the use of system resources, and also
supervise the low-level communication mechanisms that are used to exchange
non-ACL messages amongst low-level components.

For this competition, the framework was realised through a combination
AFAPL for the agent level and a simple Java-based architectural framework that
provided basic mechanisms that attend to the run-time and data-distribution
requirements of lower-level components. Interaction between these layers was
facilitated by a clear and standardised interface which was realised through AF
platform services. An overview of this architecture can be seen in figure 1.

The AFAPL language models agents as mental entities whose internal state
consists of beliefs and commitments. Informally, beliefs represent the agent’s
current state of its environment, while commitments represent the outcome of
an underlying reasoning process through which the agent selects what activities
it should perform. In AFAPL, an agent has both primitive abilities, in the form
of directly executable actions, and composite abilities, in the form of plans built
from plan operators such as SEQ (sequential execution) and FOREACH (plan ex-
pansion). Execution of an AFAPL program involves the update of the agent’s
mental state by repeatedly applying an internal reasoning process that com-
bines: update of the agents beliefs via perception of the environment through
a set of auxiliary Java components, known as perceptors; the adoption of new



commitments though the evaluation of a set of commitment rules, which map
belief states onto commitments that should be adopted should that state arise;
and the realisation of commitments through the performing of actions that are
implemented through a set of auxiliary Java components, known as actuators.

The rationale for the hybrid architecture was to delegate many of the de-
tails of the herders’ control to a reactive behavioural system, whose opera-
tion was linked to the underlying sensory-motor apparatus. This system con-
sisted of various components that formed the agents primary skill-set, includ-
ing: simple action patterns (stop, turn, move_backward) and more complex
patterns that attempt to maintain or achieve simple conditions between the
agent and the environment (follow_border_obstacle, follow_border_herd,
move_toward_target, explore). Additional components embodying sensor data
processing routines were also included, that were used to recognise features in
the agent’s world model or to signal events generated by the currently active
behaviour (path_obstructed, close(target)). These features and events were
passed to the agents belief set via perceptors, where they were used as perceptual
triggers for the activation of other behaviours specified by AFAPL plans.

4 Agent Team Strategy

Central to our approach were the herder agents. These agents were responsible
for controlling the behaviour of the herders and were organised into teams that
were formed to achieve a particular task (e.g. exploration, herding a particular
group of cows). Each team was controlled by a team manager agent. Resource
allocation was carried out by team managers holding auctions in which the
herders would bid using a greedy bidding strategy to join particular teams or
cover certain roles. These auctions were intended to have three notable benefits.
Firstly, because of the greedy nature of the agents’ bidding strategy, the time
needed to carry out these auctions was minimal. Secondly, an agent that is most
suited to a task was most likely to win an auction (e.g. for a task to explore a
particular part of the map, the bidding agent that is closest will win the auction).
Finally, it enabled dynamic reallocation of agents’ priorities. For example, as
more cows were discovered, agents could switch from exploring to teams that
engaged in herding, returning to exploring once the cows were gathered.

A key strategy underlying our approach was the use of hybrid communication
by combining Agent Communication Language (ACL)-based communication and
blackboard-based communication. The ACL-based communication was realised
the AF implementation of the FIPA-ACL standards, and the blackboard-based
communication was realised through a shared map that was accessible via Java
RMI. The shared map exported a distributed update interface to all the agents
in the system. Through this interface, each agent could update the server with
its own observations and receive in return an update of all the observations
collected by the rest of the team.

In each simulation step, each herding agent had a limited time slice to send
an action message. The message sent was determined by the agent’s current low-



level behaviour. For instance if the agent was engaged in a move_toward_target
behaviour, the next message would be a movement in a direction that aids in
the fulfillment of this goal. At all times, however, the higher-level management
agents reasoned about their perceived current state of the world in order to
optimise the overall strategies of the participating agents. This meant that an
agent’s active behaviour could change because of an instruction from a team
leader, or due to a change in team membership brought about by an auction.

Robustness was a high priority in participating in the contest. Herding agents
who were still active but had become disconnected from the competition server
needed to be capable of re-establishing that connection. Additionally, a health
management system monitored both agents and the agent platforms to detect
any failures that may occur. A failed agent was replaced with a new agent of the
same type and a failed platform resulted in all the agents formerly residing on
it being recreated on other platforms.

5 Discussion

Much of our effort was in designing and implementing the infrastructure frame-
work as this was our first entry in the contest. Unfortunately by the beginning
of the contest we had not completed testing and tuning of our functional compo-
nents to the extent we would have wished. As a result, our behavioural functions
occasionally encountered unexpected exceptions that had not arisen during de-
velopment, and the resource allocation auctions were not optimised in terms of
evaluating the costs and the benefits of engaging in the various tasks.

The difficulties with the auction were the greatest limiting factor in our
performance. Agents tended to prefer exploration and single-agent herding to
the formation of groups to herd larger numbers of cows. Figure 2 illustrates this
through a case where a herd of 15 cows were driven through the bottleneck of the
“RazorEdge” scenario (a map on which the average score was a mere 5 cows).
However, having pushed this herd through the gap, the agents decided to explore
for more cows rather than continue pushing this particular herd to the corral.
This shows that while the simple agent behaviours were effective, the weighting
attached to various scenarios for the purposes of the auctions were sub-optimal.

We believe that this year’s scenario was a very useful and well organised
attempt to promote multi-agent programming. Since we have now a working
infrastructure framework, we are in a position to be more competitive in the
next contest, as we will be able to focus our work on adapting our system to the
new application scenario and focus on our real interest: multi-agent coordination.

We feel that the slowness of the simulator was a big obstacle to our devel-
opment plan in this year’s first entry to the contest, as it was difficult to run a
sufficient number of simulations to test different task and environment configu-
rations. In the future, this would be also an obstacle to the adoption of machine
learning techniques that may require substantial amounts of training data.

We believe that real systems need MAS self-organisation techniques that are
shaped by ACL-based coordination but that still manage to produce reliable



Fig. 2. RazorEdge Scenario: A herd is pushed through the bottleneck

and efficient control. Because of the large time slices allotted between moves,
teams are currently able to make use of computational expensive deliberation
phases before transmitting an instruction to the central server. While our system
architecture allowed us to produce very fast response in the behavioural layer,
we felt that the present organisation of the contest does not place a high value
such a feature. We believe that reducing the size of this time slice will force
participants to develop solutions that are closer to their real world counterparts.

6 Conclusion

This paper presents an overview of our submission to the ProMAS Multi-Agent
Programming Contest. The solution developed employed a hybrid agent archi-
tecture, whose upper deliberative layer was realised using AFAPL, and whose
lower layer consisted of a reactive architecture. High-level system behaviours
were designed using an agile modeling process, and were implemented in AFAPL.
These high level behaviours drove the adoption of various lower level reactive
behaviours, including obstacle avoidance, herding, and exploring.

References

1. O’Hare, G., Jennings, N.: Foundations of Distributed Artificial Intelligence. Wiley-
IEEE (1996)

2. Collier, R., O’Hare, G., Lowen, T., Rooney, C.: Beyond Prototyping in the Factory
of Agents. Multi-Agent Systems and Application III, Lecture Notes in Computer
Science (LNCS 2691), (2003)

3. Dragone, M.: Sosaa: An agent-based robot software framework. http://csserver.
ucd.ie/%7emdragone/pubs/MauroDragonePhdThesis.pdf (2008)

4. Clynch, N., Collier, R.: Sadaam: Software agent development - an agile methodology.
Proceedings of the Workshop of Languages, methodologies, and Development tools
for multi-agent systems (LADS’007), Durham, U.K. (2007)

5. Collier, R.: Agent Factory: A Framework for the Engineering of Agent- Oriented
Applications. PhD thesis, University College Dublin (2002)


