
Int. J. Communication Networks and Distributed Systems, Vol. x, No. x, xxxx 1

Separation of Concerns in Hybrid Component
and Agent Systems

Mauro Dragone*

CLARITY: Centre for Sensor Web Technologies
E-mail: mauro.dragone@ucd.ie
*Corresponding author

Howell Jordan, David Lillis
and RemW. Collier

School of Computer Science and Informatics,
University College Dublin (UCD),
E-mail: howell.jordan@lero.ie
E-mail: david.lillis@ucd.ie
E-mail: rem.collier@ucd.ie

Abstract: Modularising requirements is a classic problem of software
engineering; concerns often overlap, requiring multiple dimensions of
decomposition to achieve separation. Whenever complete modularity is
unachievable, it is important to provide principled approaches to the
decoupling of concerns. To this end, this paper discusses the Socially
Situated Agent Architecture (SoSAA) - a complete construction
methodology, which leverages existing well established research and
associated methodologies and frameworks in both the Agent-oriented
and Component-based Software Engineering domains. As a software
framework, SoSAA is primarily intended to serve as a foundation on
which to build agent based applications by promoting separation of
concerns in the development of open, heterogeneous, adaptive and
distributed systems. While previous work has discussed the design
rationale for SoSAA and illustrated its application to the construction
of multiagent systems, this paper focuses on the separation of concerns
issue. It highlights concerns typically addressed in the development of
distributed systems, such as adaptation, concurrency, fault-tolerance.
It analyses how a hybrid agent/component integration approach can
improve the separation of these concerns by leveraging modularity
constructs already available in agent and component systems, and sets
clear guidelines on where the different concerns must be addressed
within the overall architecture. Finally, this paper provides a first
evaluation of the application of our framework by applying well-
known metrics to a distributed information retrieval case study, and
by discussing how this initial results can be projected to a typical
multiagent application developed with the same hybrid approach.

Keywords: Separation of Concerns, Distributed System, Agent
Oriented Software Engineering, Component Oriented Software
Engineering

Copyright c© 2010 Inderscience Enterprises Ltd.



2 Dragone et al.

Reference to this paper should be made as follows: Dragone, M.,

Jordan, H., Lillis, D., Collier, R.W. (2010) ‘Separation of Concerns

in Hybrid Component and Agent Systems’, Int. J. Communication

Networks and Distributed Systems, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Mauro Dragone is a postdoctoral researcher in

the CLARITY centre and a postdoctoral fellow at University College

Dublin, School of Computer Science and Informatics. He received a

PhD from University College Dublin and a Magna Cum Laude laurea

degree in Informatics from the University of Bologna (Italy). Prior to

his involvement with the CLARITY centre, he worked for more than

12 years in a variety of software companies as a software engineer in

the area of distributed systems and enterprise applications. His current

research addresses a wide range of theoretical and practical aspects of

software engineering for ubiquitous and pervasive computing systems,

including the integration between robots and wireless sensor networks.

Howell Jordan is a PhD student in Software Engineering at Lero,

University College Dublin, Ireland. He is investigating the design

qualities, such as structure, re-use, and maintainability, of agent-

oriented programs. He graduated in Physics from Oxford (2000-2003),

and received an MSc. in Computer Science from the University

of Wales, Aberystwyth (2003-2004). He has 4 years’ experience

as a software engineer in the telecommunications industry, having

previously worked as a Technical Lead (EMF Client) in Subscriber

Data Management for Nokia Siemens Networks.

David Lillis is a PhD student in University College Dublin. He is

also a Research Assistant investigating the applicability of data fusion

in Information Retrieval as part of the SIFT project. His MSc thesis

was written while working as part of the HOTAIR Project (Highly

Organised Teams of Agents for Information Retrieval), which was

affiliated with the IIRG (Intelligent Information Retrieval Group). His

principal research interests are in the areas of Information Retrieval

and Interaction Protocols in Multi Agent Systems. He is a developer

of the Agent Factory Framework.

Rem Collier is a senior lecture at the School of Computer Science

at the University College Dublin (UCD). Rem has a primary degree in

pure and applied mathematics from the University of Bristol in 1994;

a M.Sc. in Computation (Examination and Dissertation) in 1995 and a

M.Phil (Research) in 1996 from the University of Manchester Institute

for Science and Technology (UMIST); and a Ph.D. in Computer

Science in 2001 from University College Dublin. After completing his

Ph.D., Rem spent a year working in industry, in the area of web-based

e-learning content management platforms for course authoring and

localisation. In 2002, he returned to UCD where he worked as a Post-

Doctoral Researcher, and in 2003 he was appointed as an Assistant

Lecturer. Finally, in 2005, Rem was appointed as a College Lecturer.

This work is supported by Science Foundation Ireland (SFI) under

grant 07/CE/I1147.



Separation of Concerns in Hybrid Component and Agent Systems 3

1 Introduction

Today, Agent-Oriented Software Engineering (AOSE) is regarded as a general-
purpose paradigm that facilitates the engineering of complex software by way of
Multi Agent Systems (MASs), i.e. loosely-coupled, situated, autonomous and social
components (software agents). AOSE, as discussed by Shoham (1993), offers a
novel approach to abstraction and system decomposition based on the concept of
agentification - the process of transforming a software application (or component)
into an agent by building an “agent wrapper” around it to enable it to interoperate
with the rest of the system. Zambonelli & Omicini (2004) note that AOSE is well-
suited for web-based, heterogeneous and pervasive applications that comprise a
set of autonomous processes that cooperate in a decentralised fashion. Specifically,
AOSE helps to confront the high degree of variability within such applications, and
counteract network delays that would frustrate a more centralised architecture.

The advantages of using agent-based methods are: (i) the resulting
architectures can draw from the large body of work conducted within the
MAS community, both in terms of theoretical insights as well as engineering
methodologies, toolkits and middleware; (ii) system design can be simplified
because the designer does not have to specify all interactions at design time as
some can be autonomously handled by the agents themselves; and (iii) system
robustness potentially increases because these interactions handled at run-time,
allowing the system as a whole to better adapt to environmental conditions.

These advantages are realised through the adoption of concepts such as:

1. Language: Agent-Oriented Programming is a paradigm for programming
agents using languages designed to capture a theory of rational agency.

2. Goals: Symbolic descriptions of the expected behaviour of an agent. Low-
level decisions about the specific sequence of steps necessary to achieve the
goal are identified and carried out autonomously by the agents.

3. Communication Infrastructures: Point-to-point communication and
communication protocols for: (i) distributing control and data; and (ii)
supporting automated coordination and negotiation.or

4. Naming/Brokering: Dynamic discovery of other agents, thus decoupling
agents and enabling their dynamic fitting or replacement to increase
interoperability and fault-tolerance.

5. Roles: Abstract specifications of behavioural patterns, which help
structuring a system in a set of more manageable sub-systems with given
responsibilities and interaction capabilities.

Specifically, Agent-Oriented languages provide syntactic constructs (terms,
variables, functions) to represent the domain knowledge, goals and actions of
an agent. While there is usually a degree of abstraction between language and
architectural issues, languages inevitably impose constraints on the underlying
execution layer that realises their semantics. The most common solution is
to decompose the execution layer into agents and agent platforms, with the
latter providing the functional basis that allows the agents to operate in their



4 Dragone et al.

environment and interact with one another. Thus, an agent can be seen as an
application layer software component that uses the agent platform as middleware
to gain access to standardised services and infrastructure, such as life-cycle
management, inter-agent communication, directory facilitators and coordination.
Agent platforms not only free the developer from low-level details but also promote
elementary modularity in the construction of the MAS as the features of the
platform are re-used in each agent.

The context-aware, goal-directed reasoning capabilities and the sociality
advocated within AOSE address the issue of adapting to the unpredictable
dynamics of open environments that arise not only due to the mobility of users
and processes, but also to lack of resources, power or communication disruptions.
However, while MASs can respond to such unpredictability by re-organising inter-
agent interaction patterns and (re-)negotiating for resource provision, they often
violate the principle of separation of concerns by forcing first the developer (at
design-time), and then the agents (at run-time) to consider both infrastructure-
level and application-level issues. This contradicts the modular development
process advocated within Component-Based Software Engineering (CBSE), and
also results in poorly transferable systems, both in terms of software re-use and
portability. As a result, developers are forced to rely on traditional object oriented
approaches to define complex, application-specific interfaces for the application
and operating system resources.

Recently, new research has emerged that has begun to deal with these issues
in more detail. For example, Ricci et al. (2007) have developed the CArtAgO
framework, which uses the Agents and Artifacts meta-model to model passive
software entities, known as artifacts. These are resources and tools to be utilised
in a standardised manner by agents to satisfy their objectives. Similarly, Weyns
et al. (2007) argue that the environment in which the agents are situated is an
integral part of a MAS and that the creation of an exploitable design abstraction
of the environment is considered a key step in its design and implementation.

This increasing emphasis on offering a clear separation of concerns between
the intelligent layer on one hand, and the low-level actions on the other is
mirrored in recent work on the Socially Situated Agent Architecture (SoSAA)
framework, described by Lillis et al. (2009) and Dragone et al. (2009b). SoSAA
is an open source framework that combines AOSE with CBSE to leverage their
distinct strengths and provide a complete construction process. While the original
motivation of the work comes from robotics, it is our view that SoSAA has great
potential as a general approach to fabricating complex distributed systems.

Furthermore, this use of layering as a mechanism for separating concerns in
has gained some traction in the separation of concerns community (see Section
2). To this end, this article investigates how separation of concerns is impacted
through the use of a hybrid integration strategy such as SoSAA. Firstly, we
discuss in more detail the concerns typically addressed in the development of
distributed systems, such as adaptation, concurrency, fault-tolerance, and review
how they are addressed in related work. Secondly, we provide an overview of how
component based techniques may support highly modular software architectures.
Finally, we discuss SoSAA and analyse the case study of an agent-based search
engine case study to illustrate how separation of concerns can benefit from the
agent/component hybrid approach pursued in SoSAA.



Separation of Concerns in Hybrid Component and Agent Systems 5

2 Separation of Concerns in Distributed Systems

Separation of concerns is a concept that is at the core of software engineering.
It refers to the ability to identify, encapsulate, and manipulate those parts of
software that are relevant to a particular concern. Mili et al. (2004) define a
concern as a set of related properties/requirements of the software being developed.
Melliar-Smith et al. (1997) distinguish between two different levels of separation
of concerns: (i) a conceptual level, aimed at identifying the primitive concerns
of a specific domain/application, and (ii) an implementation level, aimed at
providing an adequate organisation that isolates the concerns. The goal of the
implementation level is to separate the blocks of code that address the different
concerns, and provide for a loose coupling of them. Unfortunately, they observe
how few programming languages allow conceptual level abstractions to actually be
separately programmed. In other words, separation of concerns is often practiced
at the conceptual level, but not at the implementation level. The resulting code
organisation is monolithic, intertwining different concerns.

The latest generation of separation of concerns techniques include: subject-
oriented programming, described by Harrison & Ossher (1993); composition
filters, described by Aksit et al. (1992); AOP and view-oriented programming,
described by Mili et al. (1999). It can be argued that these techniques define
new modularisation boundaries for requirements that are necessarily different from
those offered by traditional object-oriented approaches. This is because concerns
are rarely identifiable with specific architectural elements but are instead cross-
cutting (aspects) and scattered over different software artifacts.

Many kinds of concern may be relevant to different developers in different
roles, or at different stages of the software life-cycle. Mili et al. (2004)
identify three major categories of requirements for software development:
(i) Application-Specific Functional requirements; Run-time (non-
functional) requirements (dictating application-independent properties,
including distribution, persistence, security; and Requirements on the software
artifacts (dealing with modularity, reusability, choice of programming language,
adherence to specific programming style, etc.). Melliar-Smith et al. (1997)
argue for the clear separation of the concerns that underpin each of the first
two categories. That is, the functional behaviour of the application should be
programmed by programmers who understand the application, while the non-
functional behaviour (e.g. fault tolerance, maintaining the consistency of replicated
information, assigning objects across a distributed system or load balancing and
real-time scheduling) should be undertaken by programmers with expertise in
those specific areas. Silva et al. (1995) investigate the set of concerns that arise
from non-functional requirements specific to distributed systems by examining the
level of transparency offered in modern distribution middleware, and identify seven
concerns: fragmentation, replication, naming, concurrency, failure (fault tolerance),
configuration, and communication. For Silva et al. (1995), the naming concern
is associated with location transparency, in which the application is not aware of
the resource location. The communication concern is associated with access
transparency, in which identical operations are used to access local and remote
objects. The concurrency concern generates and controls access to shared
resources ensuring undesirable interferences do not arise. Scaling transparency is



6 Dragone et al.

not handled by a particular concern but is achieved if all the concerns consider
scalable solutions. Finally, performance transparency, the ability of dynamically
configuring the software in order to satisfy performance requirements, is associated
to the configuration concern.

However, Silva et al. (1995) observe that, in most heterogeneous and open
distributed systems, transparency is not sufficient for the handling of concerns at
different levels of abstraction, namely:

1. Model level, describing the expectation of users about the application or
system behaviour;

2. Policy level, defining algorithms which support application models;

3. Mechanisms level, defining functionality which is used by policies to
implement their algorithms.

For Silva et al. (1995), mechanisms should be further refined in terms of
abstract and concrete mechanisms. The first fulfil the needs of models and
policies in a platform independent manner while second ground them in the
functional resources of the specific platform. This concept is illustrated via the
concurrency concern by describing how concurrent activities can be implemented
in a given platform with operating system threads while mutual exclusion
can be supported by synchronisation primitives Mutex and Condition. Policy
independence allows the same model to be simultaneously supported by different
policies, so that heterogeneous policies, offering the same model, can coexist
in the same application. Moreover, independence between policies and concrete
mechanisms allows the application to be supported by heterogeneous platforms.

Atkinson & Kuhne. (2000) investigate the concept of a stratified
architecture from a methodological standpoint as a means to abstract from
aspects to the point where they become relevant. Their key observation is that
although it is desirable to base aspects on high level system concepts, such as
patterns or architectural styles, much of the perceived “tangling” between software
components comes from low level component interactions where only code level
abstractions are available. As a result, their methodology is based on refinement
design patterns whereas system abstractions are used as anchors for defining
the location of aspects, before implementation details are added in a step-wise
manner. While they envisage the existence of many refinement patterns for specific
aspects, they illustrate their approach by describing how the interaction between
a Writer class and a File object in a distributed system can be refined by adding
components in charge of data marshalling and distribution.

A key insight offered by Atkinson & Kuhne. (2000) is the realisation that
providing different levels of abstraction helps the design and development of
large scale systems. For example, in the persistence scenario, someone trying to
understand the overall structure of the system is best served with a high level
view, where only the Writer and the File objects are visible, while another person,
whose task it may be to change the way data is marshalled over a network, gains
more from looking at the refined model. This is in line with a number of other
works trying to fill a perceived gap in aspect-oriented methodologies, i.e. that
they do not explicitly address the need to document, communicate, reuse and
systematically handle high-level compositions. For instance, Landuyt et al. (2007)



Separation of Concerns in Hybrid Component and Agent Systems 7

propose the Theme/UML graphical notation to capture the stakeholder concerns
for a software system in a more direct manner and improve the traceability of
concerns throughout the software life-cycle. Finally, it is this insight that drives
the approach advocated by SoSAA where we believe that a stratified approach
that combines AOSE and CBSE offers the potential to improve the separation of
concerns in distributed systems.

3 Component Based Software Engineering

The Open Service Gateway Initiative (OSGi), CORBA Component Model,
Microsoft Object Model, Enterprise JavaBeans and Fractal are some of the
component-enabling technologies used for the creation of many industrial-strength
distributed systems. Conceptually, the same technologies also provide a composite
model for Service Oriented Architectures, by helping to design systems in terms
of application components that can expose their public functionality as services
(interfaces) as well as invoke external services.

While Object Oriented Programming (OOP) stresses separation of concerns,
it is still fundamentally oriented toward white-box reuse. In the context of object
oriented integration frameworks, for example, polymorphism and inheritance are
used for the implementation of the customisation and extension mechanisms. Both
mechanisms create compile-time dependencies between the various elements of the
frameworks. This limits software modularity since a modification in one element
may require the modification of other elements in the framework. Consequently,
much of the merit of the design (e.g. its ability to stand further iterations), stems
from the architectural choices and design patterns realised in each system.

In contrast, Szyperski (1998) notes that within CBSE, components are units
of independent development, deployment and reuse that must conform to specific
contractual obligations. Domain analysis captures the main quality attributes and
expresses them in the form of a component model. This is aimed at providing
an unambiguous description of the component types, in terms of their features
and behavioural properties, and the set of their legitimate relationships. Together,
a component model and its (usually object-oriented) component framework
realisation constitute a well-defined and stable architectural frame, which assures
that components can be developed independently while preserving system quality
attributes like responsiveness, fault tolerance, scalability and performance.

3.1 Component Context

The most important common concept among component models and frameworks
is the relationship between a component and its environment, wherein a newly
instantiated component is provided with a reference to its Container or Component
Context. This usually acts as an access point for framework-level functionalities
reused across different applications. Reina & Torres (2004) call these functionalities
“infrastructural services”. The container can be thought of as a wrapper that deals
with technical concerns such as synchronisation, persistence, transactions, security
and load balancing. The component must provide a technical interface so that all
components will have a uniform interface to access the infrastructure services.



8 Dragone et al.

OSGi defines a standardised component model and a lightweight container
framework, built above the Java Virtual Machine, that is used as a shared platform
for network-provisioned components and services specified through Java interfaces.
Each OSGi platform facilitates the dynamic installation and management of
simple components called bundles, by acting as a host environment whereby
various applications can be executed and managed in a secured and modularised
environment. An OSGI bundle organises the framework’s internal state and
manages its core functionalities. These include both container and life-cycle
operations to install, start, stop and remove components as well as checking
dependencies.

The java.beans.beancontext package in the Java Beans specifications provides
the same kind of container environment. In addition, it introduces the notion of
a hierarchical nesting or structure of BeanContext and JavaBean instances. This
enables logical and/or functional grouping of components and allows the definition
of macro-functionalities that can operate on those groups.

In contrast, Fractal supports a fully recursive hierarchical structure, whereby
each component can also be a composite component by providing its own
inner context to organise inter-component functionalities among its children.
Additionally, Fractal introduces the notion of a component endowed with an open
set of control capabilities. These are not fixed in the model but can be extended
and adapted to fit the programmer’s constraints and objectives.

3.2 Composition, Distribution and Adaptation

Many of the infrastructural services associated with component contexts act as
late-binding mechanisms that can be used to defer inter-component associations
by locating suitable collaboration partners for each of the collaboration styles
supported by the framework. Through these brokering and naming mechanisms,
components do not need to be statically bound at design/compilation time but
can be bound either at composition-time or at run-time in order to favour the
construction of adaptable software architectures. These features are present in all
the frameworks considered in the previous section and also in more traditional
distribution middleware, as in the CORBA trading service. The Activator class
in OSGi, the BeanContext, and the component’s membrane in Fractal enable
components to look up services in the framework’s service registry, register
services, access other components, and install additional components within the
local platform. In these cases, distributed component bindings are usually achieved
through port and proxy mechanisms, as in OSCAR, a component framework
built over OSGi. In OSCAR, a port can be viewed as a connection point on the
surface of the component where the framework can attach (connect) references
to provides-ports provided by other components. The PortsManager component
is responsible for returning the correct Java object when a port is requested
by a component. It either calls the appropriate methods of the locally available
service implementation object or translates the Java method calls to messages,
sends them to a remote container (e.g. availing of Java RMI, SOAP, or JXTA),
waits for remote execution and then returns the value contained in the received
message. In addition, the PortsManager also supports intelligent hot swapping
of services to implement fault-tolerant and adaptive solutions. Specifically, as



Separation of Concerns in Hybrid Component and Agent Systems 9

every service in OSGi may be given a certain rank which describes its quality
and importance, when queried about a particular service, the PortsManager
automatically tries to locate the highest-ranked implementation. However, in most
of the frameworks of this type, run-time architectural adaptation usually leaves
the issues of synchronising and coordinating between peer adaptive entities at the
application-level to the developer.

4 The SOcially Situated Agent Architecture (SoSAA)

SoSAA incorporates modularity by applying the principles of hybrid control
architectures to autonomous agents. Popularised by their use in robotics
(e.g. by Gat (1992)), hybrid control architectures are layered architectures
combining low-level behaviour-based systems with high-level, deliberative
reasoning apparatus. This is a familiar concept. As humans, there are certain
menial tasks that we can undertake without investing a significant amount of
thought. Indeed we even refer to such activities as “mindless” on a regular basis.
Working on a simple production line is one such example, and so it is desirable to
separate the important intentional actions from those menial tasks.

From a control perspective, this approach enables the delegation of many of
the details of the agent’s control to the behaviour system of the agent, which
closely monitors the agent’s functional layer. The original solution implemented
in the SoSAA framework is to also apply such a hybrid integration strategy to
the system’s software infrastructure, as illustrated in Figure 1, by combining a
low-level component-based infrastructure framework with an agent-based high-
level infrastructure framework. The low-level framework operates by imposing
clear boundaries between architectural modules (the components). It then provides
a computational environment to the high-level framework, which augments its
capabilities with its multi-agent organisation and goal-oriented reasoning.

A standardised and simple interface between the agent and the component
layer allows the use of different agent systems and different component technologies
to build heterogeneous distributed and embedded systems. Agent programming
languages that have been developed specifically with deliberative reasoning in
mind, such as the AF-APL2 language proposed by Collier et al. (2003) as part of
the Agent Factory (AF) framework, can be used for the higher-level, goal-based
management of components in SoSAA. Agents can decide when it is appropriate
to activate or deactivate components according to the needs of the system as a
whole. Components are left to carry out lower-level functionalities, which are then
driven/configured by the agents..

The key to the implementation of SoSAA is the SoSAA Component Platform
Service, discussed in more detail later in this section. This service describes
the SoSAA Component Model and exposes its core mechanisms to the system’s
agents. These mechanisms are commonly supported within different component-
enabling technologies, such as Java Beans, OSGi or Fractal. These mechanisms
are encapsulated in a service for the AF platform and are accessed through
a set of interface modules, collectively named the SoSAA Adapter. Specifically,
query-type modules (perceptors) query the component framework and provide
beliefs about events, the set of installed components, their interfaces (based on



10 Dragone et al.

Figure 1 SoSAA Hybrid Agents/Components Integration Strategy

messages, events and/or procedural calls), their actual wiring, and their run-
time performance, while actuator-type modules control the loading, unloading,
configuration, activation, de-activation, and wiring of components.

The key to supporting the separation of concerns in SoSAA systems is the
fact that infrastructure-type mechanisms are realised in the form of infrastructure-
type components. By modelling these mechanisms in the agent layer, both the
system developer and the agents can then rely on the default behaviour these
mechanisms provide whenever possible, and override them only when they do
not suffice to reach the system’s objectives. To this end, SoSAA uses an event-
based collaboration pattern to guide the integration and the run-time interaction
between the two heterogeneous software elements it combines. Agents will usually
declare their interest in either application or infrastructure types of events, in order
to override both the basic functionalities and the framework-wide mechanisms
provided by the underlying component framework (e.g. logging, component
repair, scheduling), and operate more reasoned structural and behavioural re-
configurations to the functional layer through the SoSAA Adapter. There are three
levels of separation of concerns in SoSAA, respectively:

1. Separation between functional and non-functional concerns in both
the agent and the component layer.

2. Separation between high-level interaction models, which are defined
in terms of multi-agent coordination and goal strategies to attend
performance and adaptation concerns, policies, supported through the
associated coordination and execution plans, and abstract mechanisms
supported in the SoSAA component model.

3. Separation of these abstract mechanisms from their actual
implementation, which is grounded in the specific component framework
adopted in the component layer.



Separation of Concerns in Hybrid Component and Agent Systems 11

4.1 Component Layer

The Java Modular Component Framework (JMCF) is the component framework
developed as part of SoSAA and explicitly designed to support a stratified
architecture by acting as an interface toward different component-enabling
technologies. To this end, JMFC is organised (see Figure 2) in a core package,
which describes the minimal SoSAA minimal component model, and in an
implementation package. The latter includes common abstract classes defining
common component types. Rather than directly implementing each of their
features and capabilities, all the component types and the components in JMCF
use a proxy design pattern to, respectively: (i) declare that they support a specific
interface (feature), and (ii) return a reference to its implementation. Toward
the root of the class-inheritance hierarchy, component types feature interfaces
to infrastructure-type services, for example, used for configuration, life-cycle
management, event support, and also for supporting of recursive contexts.

Once an application’s components extend a specific component type, they
automatically inherit the infrastructure mechanisms, the interfaces, and all the
features supported by that component type. They are then left to declare the
component’s name, and all the component’s interfaces by specifying (via an
InterfaceInfo object), respectively: their name, their type (SERVICE, DATA,
EVENT ), and their class. To work properly, an object implementing the interface’s
class needs to be associated with each server-side interface. This can be done either
explicitly or implicitly. In the former case, the method wire(InterfaceInfo client,
InterfaceInfo server) in the context is called to assign a client-side interface to
the reference of its server-side implementation. In the latter case, this is done
automatically by the component context for each client-side interface of a newly
installed component, by selecting the first server-side implementation compatible
with the client within the context.

Figure 2 OOP Organization of the Java Modular Component Framework

In addition to the components that are logically part of agents, i.e. taking care
of application-specific requirements, each platform also hosts a number of standard
infrastructure-type components to handle non-functional concerns by interacting
with the corresponding component types defined in the framework.



12 Dragone et al.

Basic Infrastructure Services: The most abstract implementations
of JMCF components include interfaces enabling configuration, life-cycle
management, component repair, and recursive contexts. For instance, if a
component declares a SelfTolerantComponent interface, it is implicitly bound with
a ComponentRepair component. This exports a ping() server-side interface, which
is used to implement a basic health-monitoring service by: (i) automatically re-
loading every component that fails to call it for more than a given amount of time,
and (ii) raising a ComponentFailureEvent within the context.

The jmcf.impl.beans package provides an implementation based on the
Java-Beans standard, in which context functionalities are implemented using
respectively: the BeanContextServiceProvider class from the java.beans package,
while the jmcf.impl.j2me package implements the same functions availing of the
the standard Container library. In order to provide a consistent interface to the
agent layer, the other responsibility handled at this level is to smooth some of the
differences between the different component technologies. For instance, the JMCF
core allows the definition of recursive contexts by overriding the service brokering
functionalities of contexts that do not natively support them, as in Java Beans.
If the JMCF component is defined as composite, every interface declared by the
components installed in its internal context, is also declared in the outside context.

Executors and Activities JMCF supports ExecutorType components to
handle the concurrency concern in the component layer. Each context can have
at most one active executor for scheduling active components. Contrary to
passive components, which only respond to requests from other components,
active components usually need to cyclically attend to their operations. Activity
components adhere to the inversion of the control design pattern by subclassing
the ActivityType component type. This exports a procedural interface that is
periodically called by the the framework’s executor. Such a design pattern,
popular within component-based systems, represents a scalable alternative to
multithreading and assists the development of code with high cohesion and low
coupling that is easier to debug, maintain and test. In the case of the JMCF, the
available implementations of the scheduling component are based either on the
java.util.Timer class or on the java.util.concurrent.ScheduledThreadPoolExecutor
class. Further specialisation of the these classes implement different scheduling
strategies, such as round-robin or priority based.

Transport Protocols and Network Adapters Similar to what happens
in the OSCAR component framework, JMCF uses network adapter components
to connect Java client-side interfaces to server-side interfaces operating in
remote component contexts. The JMCF.impl.dist package includes subpackages
implementing a number of common interface adapters and converting the
corresponding method calls to calls and messages to be exchanged through
standard communication protocols, such as TCP/IP, UDP and HTTP, and popular
Java middleware technologies, such as RMI and JMS. The built-in interface
adapters are those for the pull (Object pull()) and for the push (void push(Object))
interfaces while generic adapters can be created at run-time, by availing of Java
proxies. Correspondingly, there also exists components for managing the various
available network protocols. TCPTransport is the component that manages the
TCP transport protocol. On setup it configures the socket layer and exports
the TCP-IP server socket to which all incoming TCP-IP connections connect.



Separation of Concerns in Hybrid Component and Agent Systems 13

After a connection is made, the client component (e.g. a TcpPullClient or a
TcpPushClient) sends the name of the component it wants to speak with and the
TCPTransport notifies the requested server-side component (e.g. a TcpPullServer
or a TcpPushServer) of the request, by passing the socket it has just accepted.

4.2 Agent Layer

For the SoSAA agent layer, AF is used in tandem with AFAPL, a purpose
built BDI-style Agent-Oriented Programming language that models agents as
mental entities whose internal state consists of beliefs, goals and commitments.
Beliefs represent the agent’s current state of its environment, while commitments
represent the outcome of an underlying reasoning process through which the agent
selects what activities it should perform. In addition to atomic actions, each agents
can avail of a library of pre-compiled plans, i.e. procedural knowledge of the steps
necessary to achieve given goals in given circumstances. The goal-based nature
of these agents constitutes an important source of modularity, as designers can
concentrate on writing plans for a subset of essential situations and can construct
plans for more specific situations as they debug the system. Plans are invoked
either in response to particular situations or based on their purpose, by availing of
meta-reasoning heuristics used to select the best possible plan.

Execution of an AFAPL program involves the update of the agent’s mental
state by repeatedly applying (driven by the AF Platform Scheduler Service) an
internal reasoning process that combines: (i) update of the agents beliefs via
perception of the environment through a set of auxiliary Java components, known
as perceptors; (ii) the adoption of new commitments through the evaluation
of a set of PROLOG-like commitment rules, which map belief states onto
commitments that should be adopted should that state arise; and (iii) the
realisation of commitments by performing actions, which are implemented through
a set of auxiliary Java components, known as actuators. Finally, the special
actions adoptGOAL(condition), achieveGOAL(condition) are used to post new
goals and consequently trigger the nested activation of sub-plans with matching
post-conditions, respectively in asynchronous and synchronous modality. In
addition, mantainGOAL(condition) is used to define homoeostatic goals, that are
automatically re-posted by the AF interpreter whenever they become unsatisfied.

The AF platform includes standard infrastructure agents, such as the
HealthMonitor Agent, in charge of supervising the liveness of the agents in
the system and cause their re-initialisation in case of detected failure, and a
DirectoryFacilitator Agent, in charge of naming and brokering functionalities. In
addition to application-specific agents, SoSAA adds a number of infrastructure-
type agents to supervise or override the basic infrastructure mechanisms
implemented in the component layer.

Executor Agent: An executor agent in SoSAA can be used to supervise
each executor component used in the component layer. This executor agent
monitors the state of the activities running in the corresponding context, as well
as the frequency of their execution. The underlying executor component may be
configured to use a thread pool to inject control in the active components installed
on that context. If at run-time one activity requires more CPU, the agents can
negotiate the urgency of that activity among themselves.



14 Dragone et al.

TransportManager Agent: A similar overriding mechanism is used to enable
dynamic data distribution in SoSAA systems. While the component context’s
brokering system can be used to connect component’s interfaces within the
same context, a TransportManager agent must negotiate (at run-time) the actual
transport mechanism employed for interface distribution based on the capabilities
of each node involved in a remote communication. The TransportManager is
activated by application agents through a set-connection request carrying the
details of both the local and the remote interface, whenever a need for their
connection appears in the application layer. This request is done by way of
an ACL (Agent Communication Language) message. Once a TransportManager
has received such a request from an application agent, it contacts corresponding
TransportManager agent in the remote platform to exchange information about
the network adapters supported by each platform. Once they agree on a common
transport mechanism, both agents (i) install the interface adapters for the interface
to be wired (respectively a client and a server-side adapter), and (ii) bind it
with the respective functional component. In addition, the TransportManager on
the client-side also configures its network adapter with the details necessary to
contact the server’s node (e.g. by passing its RMI/JMS reference or a network
address). Once a connection between functional components is established, they
can use their interfaces exactly as if they were in the same process. Besides the
initial connections, the other important responsibility of the TransportManager
agents is to try to maintain the connection between components despite network
disruptions. This is done by exploiting AFAPL’s goal handling mechanism.

The TransportManager and the DirectoryFacilitator agents are re-used in
all applications. In contrast, the Executor and the HealthMonitor agents offer
standard behaviours that often need to be adapted to the specific application. In
this case, AF offers customisable points in the form of agent roles, that need to be
implemented by the application developer and associated with these agents, e.g.
to implement particular priority mechanisms and component re-booting policies.

4.3 Summary

Figure 3 summarises all the modules (agents and components) discussed in
the previous section, distinguishing between infrastructure-type modules and
application-dependent modules. It also highlights the interaction mechanisms used
within SoSAA and, in particular, those used to decouple modules across the
infrastructure/application boundary. In the component layer, basic mechanisms
dealing with communication, concurrency, performance, scalability, and naming
concerns are handled through dedicated infrastructure-type components, while
application components handle all the functional concerns. In the agent layer,
a number of agents delivered with SoSAA augment the basic infrastructure
mechanisms implemented in the component layer while infrastructure agents
delivered with the standard AF platform take care of naming and fault-tolerance
concerns. The platform also includes application-specific modules addressing
system adaptation, in the form of agent roles involving both ACL dialogue
plans and coordination protocols. However, these modules need to be instantiated
within application-dependent agents, which are ultimately in charge of adaptation,
scalability and performance concerns. Both infrastructure and application agents



Separation of Concerns in Hybrid Component and Agent Systems 15

interact with their respective component counterparts via the SoSAA Adapter.
Infrastructure agents interact via ACL, which is also used between application
agents and the standard modules delivered in the AF platform. However,
the interaction between application agents and SoSAA infrastructure agents is
supported through the plan/goal deliberation. Application agents post goals that
are then achieved by infrastructure agents aware of the necessary technical details.
In the component layer, infrastructure and application components interact via
standard components’ interfaces (messages, events, and procedure calls). However,
these interfaces and their associated interactions are hidden in the implementation
of the JMCF component types that are sub-classed by the application components.
Together, the AF plan/goal deliberation and the JMCF organisation in component
types enable the decoupling between application and infrastructure concerns, both
at run-time and design-time, as the application developers can just focus on
application-dependent development.

Figure 3 Separation and Decoupling between concerns in SoSAA

5 The HOTAIR Case Study

To illustrate the effect of SoSAA on the separation of concerns, and provide an
initial evaluation of its application to the design of MASs, this section presents a
case study of the HOTAIR (Highly Organised Teams of Agents for Information
Retrieval) system. HOTAIR is a large-scale Information Retrieval (IR) (i.e. search)
engine, built as a MAS, and described by Peng et al. (2005). Specifically, we
compare an old implementation of HOTAIR, which did not take advantage of
SoSAA, with its new SoSAA-based implementation.

5.1 Methodology

A procedure for measuring separation of concerns in software has already been
established by Sant’Anna et al. (2007). However, this is recent work, and



16 Dragone et al.

suitable thresholds (‘good’ and ‘bad’ value regions) for these metrics have yet
to be identified. We therefore adopt the benchmarking methodology proposed
by Vaishnavi & Kuechler (2007)[p.167], and compare two ‘solutions’ (one using
SoSAA, the other without) in a particular ‘scenario’ (the HOTAIR application).

HOTAIR was selected as an example of an application that can benefit from
the separation of concerns afforded by a hybrid agent/component integration
approach. However, the way modularity is achieved in HOTAIR is representative
of a large class of multiagent applications, for which the application developer
needs to provide application-specific constructs, such as different sets of plans
and roles, to address all the functional requirements of the application. The main
limitation of comparing just two architectures in one scenario is that our results do
not necessarily generalise to other development contexts: further work to establish
wider applicability may be required in future.

Table 1 Metrics for Architectural Separation of Concerns

Question Measured
Entity

Measured Attribute Metric Definition Unit

1(a)i Concern Concern Diffusion
over Architectural
Elements (CDAE)

Number of architectural
elements which contribute
to the realization of this
concern

Elements

1(a)ii Concern Architectural
Interlacing Between
Concerns (AIBC)

Number of other concerns
which share at least one
architectural element with
this concern

Concerns

1(b)i Element Afferent Coupling
Between Elements
(AC)

Number of elements which
require service from this
element

Elements

1(b)ii Element Efferent Coupling
Between Elements
(EC)

Number of elements from
which this element requires
service

Elements

1(c)i Element Lack of Concern-
based Cohesion
(LCC)

Number of concerns
addressed by this element

Concerns

From the suite of metrics proposed by Sant’Anna et al. (2007), we select those
appropriate to our scenario using the Goal/Question/Metric (GQM) measurement
approach of Basili et al. (1994). In this approach, the overall goal of the study
is first identified, then a set of questions to address that goal are defined. These
questions are then progressively refined until they can be answered by direct
measurement of the artifact using appropriate metrics.

For each version of the HOTAIR system, we ask the following questions:

1. How are the important concerns of the HOTAIR system allocated among its
architectural elements?

(a) Where is each concern realised?

i. Over how many architectural elements is this concern scattered?

ii. How many other concerns are also realised by the same
architectural element(s)?

(b) How tightly coupled is each architectural element?

i. How many other elements require service from this element?



Separation of Concerns in Hybrid Component and Agent Systems 17

ii. To how many other elements does this element provide service?

(c) How cohesive is each architectural element?

i. How many different concerns are realised by this element?

Table 1 summarises the metrics selected to answer the identified questions,
modified for hybrid component-agent systems as follows. The systems under
comparison are composed of roles, plans, components, and platform modules -
elementary units developed to address the application’s functional requirements
and access infrastructure services - and we make no distinction between these
categories at the architecture level. For this reason, we replace the term
“component” with the more general “element”, to indicate any of these units of
development. For all these metrics, a lower value indicates a higher degree of
separation and decoupling of concerns. All have a minimum value of zero, except
CDAE which has a minimum value of one.

In order to calculate values of these metrics, we require:

1. the architectural elements of the application, and the relationships between
them, to be identified; and

2. the concerns of the application to be known and clearly defined.

5.2 Architectural Analysis

The goal of HOTAIR is to maximise the throughput of documents that are
processed by the system and stored in a common index supporting subsequent
queries. Compared to a more straightforward component-based implementation,
HOTAIR’s multiagent nature accounts for an open computational environments,
where agents and nodes must be capable of being added and removed at run-
time, and all available computational resources are leveraged opportunistically by
reacting to the unpredictable content of the files processed through the system.
Firstly, this is achieved by encapsulating each of the processing stages in a specific
agent type. In particular, (i) Data Gatherer Agents (web-crawlers) identify and
download documents from the Internet, (ii) Translator Agents translate these
documents (parsing their content, extracting hyperlinks, and reducing them to
to a common format), and (iii) Indexing Agents, store the resulting documents
into the index. Secondly, ACL-based coordination is used to maximise system
throughput, by changing the number, the distribution, and the collaborations
path-ways between the agents instantiated in the system, while also reacting to
run-time performance and unforeseen circumstances, such as failure and platforms
joining or leaving the system. For instance, as each data producer (i.e. gatherer
and translators) writes its data to a queue, it broadcasts (via ACL over UDP) the
length of this queue across the system. Whenever a consumer agent (i.e. translators
and indexers) needs more documents to process, (i) it decides where it wishes to
take documents from, (ii) makes a request to that effect to the selected producer,
and (iii) then reads the data available from the producer’s queue. Each agent has
its own view of the state of the system, which is used to decide where documents
are to be taken from. Each agent makes this decision with only itself in mind and
reassigns itself when the queue it has been using becomes empty. In addition, a
Performance Manager agent also exists to maintain a view of the overall state of



18 Dragone et al.

the system and attempt to optimise the system for maximum throughput. It has
the power to request that agents take their documents from specific agents, so as
to balance the load throughout the system.

Figure 4 HOTAIR Architecture before SoSAA

The main difference between the two implementations (which were detailed
by Lillis et al. (2009)), is that in the pre-SoSAA HOTAIR, application functions
were carried out by object-oriented modules encapsulated by AF actuators and
perceptors, without the stratified approach introduced with SoSAA. Before the
introduction of SoSAA, all functions of agents were at the AFAPL level. This
architecture is illustrated in Figure 4. This shows an example of two agent
platforms (though the number of platforms is not limited), each hosting groups of
Data Gatherer, Translator and Indexer agents. The broadcast messages are done
using the FIPA ACL over UDP. Once an agent has decided where it wishes to
take documents from, it then switches to direct ACL communication using TCP
connections. Once two agents have agreed to cooperate, further communication
remains on the ACL level, unlike in the SoSAA-based architecture. Whenever an
agent needs more documents to process, it makes a request to that effect. The
agent providing the documents responds with the list of documents to process.

Figure 5 shows the architecture of the modified version of HOTAIR designed
to make use of SoSAA. Like the pre-SoSAA version, this shows an example of
two agent platforms (though the number of platforms is not limited), each hosting
groups of Data Gatherer, Translator and Indexer agents. These are shown in the
Agent Layer at the top of each platform. The Performance Manager is also present.
For the SoSAA-based version, a Transport Manager agent is also present on each
platform. This agent is responsible for setting up cross-platform communication
links at the component layer, which will be discussed below.

One agent of each type is magnified to show its internal structure. Each has
a deliberative layer, written in AFAPL, which fulfils many of the same functions
as in the non-SoSAA architecture. This includes broadcasting the queue status



Separation of Concerns in Hybrid Component and Agent Systems 19

Figure 5 HOTAIR Architecture using SoSAA

and negotiating with other agents to arrange an association for the processing of
documents. All communication at this level is still done by means of ACL.

Below this deliberative layer lies the SoSAA Adapter, to expose the component
layer to the agents. The principal difference between the non-SoSAA architecture
and the SoSAA-based architecture is that lower-level functions are moved from the
agent layer to the component layer. In the context of HOTAIR, these low-level
functions are the actual processing of documents and the transfer of documents
between agents. In Figure 5, dashed lines in the component layer indicate the
logical grouping of components with the agents whose functions they carry out.

Each agent that acts as a provider of documents for others has two components
performing its low-level functions. One component (with the same name as the
agent itself) performs the actual processing of documents and these are then
passed to a Data Queue component. The Data Queue maintains the list of
documents that have been processed but have not yet undergone the next stage of
processing. Indexers do not have Data Queue components, as no further processing
is required after this stage.

When the agents have negotiated a working relationship, their appropriate
components are wired together. In Agent Platform #1, the Translator and Data
Gatherer agents show how this is done when the agents are hosted on the same
agent platform. Here, the processing component (a Translator in this case) is wired
to the Data Queue of the relevant agent. Documents can continually be fetched
from the queue until the deliberative layer decides otherwise.

The situation is more complex when two agents on different platforms wish
to collaborate. This is shown in the relationship between the Translator agent on
Agent Platform #1 and the Indexer on Agent Platform #2. Here, intermediate
components must be introduced that are capable of communicating using network
protocols. In Figure 5, this is illustrated by the TCP Pull Server and TCP Pull
Client components that bind the Indexer to the appropriate Data Queue. In this



20 Dragone et al.

configuration, the Indexer can pull documents from the TCP Pull Client as if it
were connected directly to the Data Queue.

In the example shown, the Transport Manager on Agent Platform #1 sets up
a TCPPullServer that transparently provides a TCP interface to the Data Queue
component of the Translator agent. On the other side, the Transport Manager
on Agent Platform #2 creates a corresponding TCPPullClient, which allows the
Indexer agent gain access to the appropriate documents. The Transport Manager
agent is described in more detail by Dragone et al. (2009a).

5.3 HOTAIR Concerns

This section highlights the application-specific functional concerns in HOTAIR in
order to separate them from concerns addressed through infrastructural services
(both agent and component based) and thus help estimating the separation of
concerns likely to be achieved by applying the framework in other applications.

While we do not claim to be exhaustive, we centre our initial evaluation on
the non-functional concerns of distributed applications discussed in Section 2.
However, that section reported generic definitions for these concerns, which did
not capture the stratification advocated by Atkinson & Kuhne. (2000) and Silva
et al. (1995), and which is implemented within SoSAA for all the concerns
considered. Grounding a model/policy/mechanism architecture into (i) our hybrid
framework and (ii) a specific application, helps with this step, as we are now
in a position to describe - although not in a rigorously formal manner - each
non-functional concern at a different level of abstraction. We first distinguish
the concurrency concern by considering the concurrent execution of the agent
deliberation functionalities, which are responsible for the goal-based deliberation
and symbolic coordination at the model level of our architecture, from the
concurrent execution of application functionalities. In the old HOTAIR, these
activities were synchronously driven by the scheduler service installed in the AF
platform, with the crucial drawback that the function’s execution was subjected
to the latency dictated by slow symbolic manipulation techniques used for agent
reasoning. The SoSAA implementation successfully managed to decouple the two
types of executions by introducing a separate scheduler for the application activity
components, as discussed in Section 5.2. Next, we distinguish between three levels
of failure: failure of deliberation, failure of data transfer, and failure of application
functionalities. While nothing has changed at the deliberative level, the SoSAA
implementation has lightened the overall responsibility of the application agent,
by using the TransportManager to handle failure at the data transfer level, and
the ComponentRepair Component, to handle failure at the component layer.
Next, we distinguish between communication deliberation, that is the management
of communication models, with the actual data transfer. While the non-SoSAA
implementation addressed all the concerns in application agents, by transmitting
data via ACL, the SoSAA implementation leaves the agent to deal with the model
level, and introduces the TransportManager agent and the Network Adapters
Components to deal respectively with the policy level and the mechanism levels.
Finally, we do not include either the adaptation concern, as it is addressed by
application agents in both implementations, nor the naming concern, as although



Separation of Concerns in Hybrid Component and Agent Systems 21

Table 2 Locations of Concerns

Pre-SoSAA With SoSAA
Concurrency:Deliberation AF SchedulerP AF SchedulerP

Concurrency:Function AF SchedulerP ExecutorC
Failure:Deliberation Health MonitorA Health MonitorA

Failure:Function C×ApplicationA Component RepairC
Failure:Data Transfer C×ApplicationA Transport ManagerA

Communication:Deliberation C×ApplicationA C×ApplicationA

Communication:Policy C×ApplicationA Transport ManagerA
Communication:Mechanism C×ApplicationA Network AdapterC

Table 3 Concern Metrics in HOTAIR Versions (C = 3)

Pre-SoSAA With SoSAA
CDAE AIBC CDAE AIBC

Concurrency:Deliberation 1 1 1 0
Concurrency:Function 1 1 1 0
Failure:Deliberation 1 0 1 0

Failure:Function C 4 1 0
Failure:Data Transfer C 4 1 1

Communication:Deliberation C 4 1 0
Communication:Policy C 4 1 1

Communication:Mechanism C 4 1 0

SoSAA handles naming of functions via the component context, function and
agents are strictly associated in both HOTAIR implementations.

Table 2 shows the architectural elements that implement these concerns in both
versions of HOTAIR. We use subscripts A, C, and P to denote the type of each
element: agent, component, or platform module. For simplicity, only architectural
elements that exhibit significant differences between the two versions are shown.

In order to aid generalisation to different applications, the Data Gatherer,
Translator and Indexer agents have been grouped in a single “application agent”
category; each agent is counted as a single element. To emphasise how the metric
values depend on the complexity of the application, we introduce the constant C,
the value of which is 3 for HOTAIR. C counts the number of application-specific
elements in the design (not the number of the actual agents deployed, which does
not affect the development effort).

5.4 Evaluation

Performance and fault-tolerance improvements related to the SoSAA
implementation of HOTAIR have been described by Dragone et al. (2009b,a). In
this section, we quantitatively compare the separation of concerns in the SoSAA
and non-SoSAA HOTAIR architectures.

Tables 3 and 4 show the values of the five selected metrics, calculated manually
by inspecting the source code, architecture diagrams, and data shown above. The
calculated values are minima, since for clarity we have only considered a subset of
the HOTAIR application; the implementations have more architectural elements
and other concerns.

The values for the CDAE and AIBC metrics in Table 3, and the LCC metric
in table 4 can be computed directly from the locations of concerns in Table 2.

In calculating AC and EC, we only considered dependencies that need to be
addressed by the application developer, and ignored dependencies that are resolved



22 Dragone et al.

Table 4 Architectural Element Metrics in HOTAIR Versions

Pre-SoSAA With SoSAA
AC EC LCC AC EC LCC

AF SchedulerP 0 0 2 0 1 1
Health MonitorA 0 0 1 0 1 1

GathererA 1 0 5 1 0 1
TranslatorA 1 1 5 1 1 1

IndexerA 0 1 5 0 1 1
ExecutorC - - - 0(1) 0(1) 1

Component RepairC - - - 0(1) 0(1) 1
Transport ManagerA - - - 0(2) 0(2) 2
Network AdapterC - - - 0(1) 0(1) 1

transparently by the framework. For instance, application agents do not deal
directly with the AF Scheduler, which drives their deliberation transparently; thus
for the pre-SoSAA version, AC and EC in the first row of Table 4 are 0. However,
in the SoSAA implementation, the developer may extend the behaviour of the
AF Scheduler, by adding plans to control the priority mechanism implemented in
the Executor component. The same is true for the Health Monitor: in the SoSAA
version, the developer can include application specific strategies for component
repair.

There is little difference in the values of AC and EC metrics for the three
types of application agents (Gatherer, Translator, Indexer). However, in the
pre-SoSAA version, these agents handle all the concerns addressed by the new
architectural elements in the SoSAA-based implementation, which explains the
significant differences in the LCC values.

In the SoSAA-based implementation, all the dependencies between the new
infrastructure elements are handled transparently within the framework, availing of
the component, and agent-based de-coupling mechanisms summarised in Figure 3.
As a result, all AC and EC metrics are null for the new elements. However, the
same rows also report these dependencies within brackets, indicating the likely
effort necessary to modify the current architecture.

The application developer does not have to worry about the Transport
Manager agent, as the application only deals with communication goals, which
are automatically resolved via goal-plan deliberation in Agent Factory. However,
the TransportManager entertains relationships with the managers located in
other platforms, and also with the component adapters. The latter are pure
infrastructure elements, which acts as client (server) to a partner adapter, and
server (client) toward an application component.

With the introduction of SoSAA to the HOTAIR architecture, the values for
the concern-based metrics CDAE, AIBC, and LCC show significant improvement.
Noticeably, we observe how these improvements would be even more significant in
case of more complex applications developed with the same model of HOTAIR but
with more application elements (i.e. C greater than 3).

For HOTAIR, SoSAA both reduces the scattering and increases the cohesion of
the selected concerns. This comes at the expense of slight increases in the coupling
between elements, as evidenced by the values of the coupling-based metrics AC
and EC - increases which are partly due to the larger number of architectural
elements present in the second design. Again, however, this does not reflect in



Separation of Concerns in Hybrid Component and Agent Systems 23

added development effort for the application developer, while presenting clear
benefits in terms of efficiency, as demonstrated by Dragone et al. (2009a,b).

6 Conclusion and Future Work

This paper has discussed the motivations and illustrated how modularity
constructs available in both CBSE and AOSE can be hybridised to provide for
various levels of separation of concerns. We have illustrated this through SoSAA
and shown that: (i) there is a clear separation of concerns between the intelligent
functionality of the agents, developed using AOSE concepts, and their lower-
level actions, which are encapsulated by components; (ii) the particular realisation
of the component framework used in SoSAA defines a stratified approach
to separation of concerns by capturing commonly agreed mechanisms among
modern component technologies and by shielding the agents from the underlying
technological aspects; (iii) SoSAA provides different levels of abstraction for system
analysis and design; and (iv) by integrating and promoting the interplay between
methods that are commonly accepted within AOSE and CBSE, SoSAA provides
a clear architectural framework to address cross-cutting concerns while preserving
system modularity.

Since SoSAA is only one example of a hybrid integration technology, and
HOTAIR is just one scenario, the results shown here are not generalizable
to other frameworks and applications. However, this study shows how
SoSAA’s two-layer design captures widely-agreed strengths of the CBSE and
AOSE domains. SoSAA also promotes a separation between business logic,
service orchestration/choreography, and service details, similar to that of
BPEL, suggesting that these results could be easily replicated using different
component/service and agent-enabling technologies.

Our previous work has demonstrated the effectiveness of SoSAA-based
implementations in limited case studies (see Dragone et al. (2009a,b)). The
scalability of similar hybrid approaches has been demonstrated by other works,
e.g. the integration of heterogeneous communication mechanisms with the hybrid
backchannel management in the RETSINA MAS of M. Berna-Koes & Sycara
(2004). However, the capability of our framework to enable large scale, open,
heterogeneous and dynamic environments, such as those targeted in HOTAIR,
remains an open question.

In practice, the advantages of a hybrid component/agent technology such
as SoSAA should be balanced against the cost of its introduction. SoSAA
requires developers to be familiar with both agent-oriented and component-based
development paradigms, and thus has a steep learning curve; it also adds extra
run-time complexity. In very small systems, and in rapid prototyping environments
where systems may have short lifecycles, these disadvantages may outweigh the
benefits.

Future work will focus both on a rigorous formalisation of the mapping of
a model/policy/mechanism stratified approach to the requirements of our test-
bed application HOTAIR, and on testing our approach in a range of diverse
applications in the pervasive computing domain.



24 Dragone et al.

This work has shed some light on the difficulty of evaluating separation of
concerns for multiagent systems, especially those of a hybrid agent/component
design, as in SoSAA. Our evaluation required us to translate currently accepted
metrics to our domain, and also make some assumptions regarding how to count
architectural elements. These assumptions will need further investigation and
validation, in particular by conducting more extensive empirical studies (following
the example of R. Burrows & Taiani (2006), Kulesza (2006), Garcia et al. (2004))
of the maintainability of hybrid, pure agent, and pure component-based solutions.

References

Aksit, M., Bergmans, L. & Vural, S. (1992), An object-oriented language-database

integration model: The composition-filters approach, in ‘Proceedings of ECOOP’,

Vol. 92, Citeseer, pp. 372–395.

Atkinson, C. & Kuhne., T. (2000), Separation of Concerns through Stratified

Architectures, in ‘Proc. International Workshop on Aspects and Dimensions of

Concerns (ECOOP. 200)’, Citeseer.

Basili, V., Caldiera, G. & Rombach, H. (1994), ‘The goal question metric approach’,

Encyclopedia of software engineering 1, 528–532.

Collier, R., O’Hare, G., Lowen, T. & Rooney, C. (2003), ‘Beyond Prototyping in the

Factory of Agents’, Multi-Agent Systems and Application III: 3rd International

Central and Eastern European Conference on Multi-Agent Systems, Ceemas 2003,

Prague, Czech Republic, June 16-18, 2003: Proceedings .

Dragone, M., Lillis, D., Collier, R. W. & O’Hare, G. M. P. (2009a), Practical

Development of Hybrid Intelligent Agent Systems with SoSAA, in ‘Proceedings of

the 20th Irish Conference on Artificial Intelligence and Cognitive Science’, Dublin,

Ireland.

Dragone, M., Lillis, D., Collier, R. W. & O’Hare, G. M. P. (2009b), SoSAA: A

Framework for Integrating Agents & Components, in ‘Proceedings of the 24th

Annual Symposium on Applied Computing (ACM SAC 2009), Special Track on

Agent-Oriented Programming, Systems, Languages, and Applications’, Honolulu,

Hawaii, USA.

Garcia, A., Sant’Anna, C., Chavez, C., da Silva, V., de Lucena, C. & von Staa,

A. (2004), ‘Separation of concerns in multi-agent systems: An empirical study’,

Software Engineering for Multi-Agent Systems II pp. 343–344.

Gat, E. (1992), Atlantis: Integrating planning and reacting in a heterogeneous

asynchronous architecture for controlling realworld mobile robots, in ‘In Proceedings

of the Tenth National Conference on Artificial Intelligence (AAAI-92)’, pp. 809–815.

Harrison, W. & Ossher, H. (1993), ‘Subject-oriented programming: a critique of pure

objects’, ACM Sigplan Notices 28(10), 411–428.

Kulesza, U. e. a. (2006), Quantifying the Effects of Aspect-Oriented Programming: A

Maintenance Study, in ‘In Proc. ICSM (2006) 223-233’.

Landuyt, D. V., Jackson, A., de beeck, S. O., Grgoire, J., Scandariato, R., Joosen, W.

& Clarke, S. (2007), Aspectual vs. component-based decomposition: A quantitative

study, in ‘Iin the Workshop on Aspects in Architectural Description (AARCH) at

AOSD 2007’.



Separation of Concerns in Hybrid Component and Agent Systems 25

Lillis, D., Collier, R. W., Dragone, M. & O’Hare, G. M. P. (2009), An Agent-Based
Approach to Component Management, in ‘Proceedings of the 8th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-09)’,
Budapest, Hungary.

M. Berna-Koes, I. N. & Sycara, K. (2004), Communication Efficiency in Multi-agent
Systems, in ‘in Proceedings of ICRA 2004. New Orleans, LA. April 26-May 1’.

Melliar-Smith, P., Moser, L. & Narasimhan, P. (1997), Separation of Concerns:
Functionality vs. Quality of Service, in ‘Proceedings of the 3rd Workshop on Object-
Oriented Real-Time Dependable Systems-(WORDS’97)’, IEEE Computer Society,
p. 272.

Mili, H., Dargham, J., Cherkaoui, O., Godin, R. & Mili, A. (1999), View Programming
for Decentralized Development of OO Programs, in ‘Proceedings of the Technology
of Object-Oriented Languages and Systems’, IEEE Computer Society Washington,
DC, USA.

Mili, H., Elkharraz, A. & Mcheick, H. (2004), ‘Understanding separation of concerns’,
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design
pp. 75–84.

Peng, L., Collier, R., Mur, A., Lillis, D., Toolan, F. & Dunnion, J. (2005), ‘A
self-configuring agent-based document indexing system’, Multi-Agent Systems and
Applications IV, Lecture Notes in Artificial Intelligence 3690, 624–627.

R. Burrows, A. G. & Taiani, F. (2006), Coupling Metrics for Aspect-Oriented
Programming: A Systematic Review of Maintainability Studies, in ‘Proceedings of
the 4th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE)’.

Reina, A. & Torres, J. (2004), ‘Components+ Aspects: A General Overview’,
Revista Colombiana de Computación. Publicado por la Universidad Autónoma de
Bucaramanga 5(1), 77–95.

Ricci, A., Viroli, M. & Omicini, A. (2007), ‘CArtAgO: A framework for prototyping
artifact-based environments in MAS’, Lecture Notes in Computer Science 4389, 67.

Sant’Anna, C., Figueiredo, E., Garcia, A. & Lucena, C. (2007), On the Modularity
Assessment of Software Architectures: Do my architectural concerns count, in ‘Proc.
International Workshop on Aspects in Architecture Descriptions (AARCH. 07),
AOSD’, Vol. 7, Citeseer.

Shoham, Y. (1993), ‘Agent-oriented programming’, Artificial intelligence 60(1), 51–92.

Silva, A. R., Silva, A. O. R., Sousa, P., Marques, J. A. & N, R. A. R. (1995),
Development of distributed applications with separation of concerns, in ‘In IEEE
Asia-Pacific Software Engineering Conference’, IEEE Computer Society Press,
pp. 168–177.

Szyperski, C. (1998), ‘Component Software: beyond object-oriented software’, Reading,
MA: ACM/Addison-Wesley .

Vaishnavi, V. & Kuechler, W. (2007), Design science research methods and patterns:
innovating information and communication technology, Auerbach Pub.

Weyns, D., Omicini, A. & Odell, J. (2007), ‘Environment as a first class abstraction in
multiagent systems’, Autonomous agents and multi-agent systems 14(1), 5–30.

Zambonelli, F. & Omicini, A. (2004), ‘Challenges and Research Directions in Agent-
Oriented Software Engineering’, Autonomous Agents and Multi-Agent Systems 9(3):
253-283 (2004) 9(3), 253–283.


