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Abstract. The development of intelligent Multi Agent Systems (MAS)
is a non-trivial task. While much past research has focused on high-
level activities such as co-ordination and negotiation, the development of
tools and strategies to address the lower-level concerns of such systems
is a more recent focus. SoSAA (Socially Situated Agent Architecture)
is a strategy for the integration of high-level MASs on one hand with
component-based systems on the other. Under the SoSAA strategy, a
component-based system is used to provide the lower-level implemen-
tation of agent tasks and capabilities, allowing for the agent layer to
concentrate on high-level intelligent co-ordination and organisation. This
paper provides a practical perspective on how SoSAA can be used in the
development of intelligent MASs, illustrating this by demonstrating how
it can be used to manage backchannel transport services.

1 Introduction

Multi Agent Systems (MAS) are often advocated as a method of leveraging
new and existing Artifical Intelligence techniques in order to build large-scale
intelligent software sytems. In this type of system, autonomous software entities
are tasked with reasoning about themselves and their environment in order to
achieve individual or system-wide objectives and goals.

To date, a large body of research on MASs has been carried out on developing
solutions to such problems as agent co-ordination, negotiation and reasoning,
along with the development of standards governing agent communication [1].
However, less attention has been paid to the practical implementation of such
systems. Agents have tended to be developed purely from an agent standpoint,
with little regard to the underlying apparatus of the system.

In recent years, new research has emerged that deals with the lower-level
aspects of intelligent systems in more detail. The CArtAgO framework makes use
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of the Agents and Artifacts meta-model in the creation of artifacts: resources and
tools to be utilised by agents in the satisfaction of their objectives [2]. Other work
has focused on the environment within which agents are situated [3], arguing that
the environment is an integral part of the MAS. The creation of an exploitable
design abstraction of the environment is considered a key step in the design and
implementation of a MAS. Both of these approaches emphasise the separation of
concerns between the intelligent intentional layer on one hand, and the low-level
actions on the other.

This trend is continued by the introduction of the Socially Situated Agent
Architecture (SoSAA) framework. SoSAA is an open source framework that
combines the concepts of Agent Oriented Software Engineering (AOSE) and
Component-Based Software Engineering (CBSE) in the development of MASs3.
There is a clear separation of concerns between the intelligent functionality of
the agents, developed using AOSE concepts, and their lower-level actions, which
are encapsulated by components. The background, motivations and underlying
low-level functionality of SoSAA have been presented in previous papers [4, 5].

In contrast to this prior work, the key contribution of this paper is to demon-
strate the practical usage of the framework to integrate a component-based
system and intelligent agents to develop a Transport Manager that facilitates
communication between low-level components. A brief overview of the frame-
work is provided in Section 2. Section 2.1 outlines a number of improvements
that were necessary so as to integrate the SoSAA approach into the underlying
Agent Factory framework [6]. This integration is implemented via the SoSAA
Adaptor, which is discussed in Section 2.2.

The implementation of the Transport Manager, which implements a hybrid
backchannel communication strategy, is presented in Section 3. Finally, our con-
clusions and ideas for future work are outlined in Section 4.

2 SoSAA

Popularised by their use in robotics (e.g. in [7]), hybrid control architectures
are layered architectures combining low-level behaviour-based systems with in-
telligent high-level, deliberative reasoning apparatus. The solution implemented
in the SoSAA framework is to apply such a hybrid integration strategy to the
infrastructure of a MAS, as illustrated in Fig. 1. SoSAA combines a low-level
component-based infrastructure framework with a MAS-based high-level infras-
tructure framework. This section provides only a brief overview to the SoSAA
framework. A more complete complete discussion can be found in [4].

The low-level framework allows for the development of functional compo-
nents that encapsulate simple system behaviours and facilitate interaction with
the agents’ environment. These components are designed so as to be assembled
into a system architecture. A run-time environment is provided to the high-level

3 SoSAA may be downloaded from http://www.sourceforge.net/projects/

agentfactory



framework, which then contributes its multi-agent organisation, interaction us-
ing Agent Communication Languages (ACL), and goal-oriented reasoning ca-
pabilities to intelligently perform this system assembly. Agents may also alter
the system architecure and/or configuration to reflect changing goals and envi-
ronmental circumstances. By interacting with the component layer, intelligent
agents can access the system’s resources, coordinate the components’ activities
and resolve conflicts. While the high level can be programmed according to dif-
ferent cognitive models, domain and application-specific issues can be taken into
account in the engineering of the underlying functional components.

Fig. 1. SoSAA Hybrid Integration Strategy

The SoSAA high-level framework provides meta-level perceptors and actua-
tors that collectively define an interface (delivered as a SoSAA Adaptor Service,
discussed in Section 2.2) that can be used to sense and act upon elements and
mechanisms of the low-level framework by loading, unloading, configuring and
binding components.

Fig. 1 shows the multi agent organisation in a typical SoSAA node. The
low-level framework provides the interface for operating both at the application
and the infrastructure level. Depending on their interests, SoSAA component
agents can be categorised as either application or infrastructure agents. Such
a clear separation is fundamental for promoting not only the efficiency and the
portability of the resulting systems, but also for separating the different concerns
at design time to facilitate the use of a modular development process.

The current implementation of SoSAA is based on two open-source toolkits:
the Agent Factory (AF) multi-agent toolkit, which is described briefly in Sec-
tion 2.1, and the Java Modular Component Framework (JMCF) 4. JMCF comes
with a package of built-in component types and base-class implementations. Fur-
ther details on JMCF can be found in [5].
4 Agent Factory and JMCF can be downloaded from http://www.sourceforge.net/

projects/agentfactory



2.1 Improvements to Agent Factory

Agent Factory is a modular, extensible, open source framework for the develop-
ment of Multi Agent Systems [6]. The key components of this framework are a
Run-Time Environment (RTE) consisting of a FIPA-compliant agent platform
along with a number of agent system architectures and a set of development kits
that contain implementations of agent interpreters and architectures.

One of the more important features offered by the Agent Factory RTE is
the support of platform services. These are shared services that are offered to
all agents residing on a particular agent platform. Examples include communi-
cation services, such as services that enable agents to exchange FIPA-compliant
messages using HTTP, UDP or local message passing. In the context of the work
presented here, the SoSAA Adaptor is implemented as a platform service that
can be accessed by all agents on a platform. Support is also provided for the
Agent Factory Agent Programming Language (AFAPL2) [6], an agent oriented
programming language that has been successfully applied in a number of signifi-
cant problem domains [8]. AFAPL2 employs a commitment-based mental state,
whose core components are beliefs, plans and commitments. Beliefs represent an
agent’s view of the world, according to information gathered by its perceptors.
Plans combine primitive actions (implemented by actuators or effectors) into
complex activities that may be carried out by the agent. This is done by way
of certain plan operators that are made available to agent developers. Commit-
ments represent the activites that an agent has resolved to perform, according
to its own reasoning mechanism.

A recent addition to AFAPL2 has been the introduction of goal-based rea-
soning. This implementation is based on the goal mechanism found in the Pro-
cedural Reasoning System [9]. Specifically, this involved the introduction of two
new operators specifically designed for goals: ADOPT and MAINTAIN. When-
ever an agent is required to satisfy a goal, firstly the postconditions of each
of the agent’s available activities (simple actions and more complex plans) are
examined. Those activities whose postconditions would result in the goal being
achieved are put into an option list. Once this option list has been created, the
agent then examines the preconditions of each of the candidate activities and
chooses the first whose precondition is satisfied by the state of the world as it
is currently perceived. If an activity fails without achieving the specified goal,
the agent will select another of the candidate activities. If an agent is required
to ADOPT a goal, once the goal is achieved, it is dropped. In contrast, when
attempting to MAINTAIN a goal, an agent will attempt to re-adopt the goal
every time it becomes unsatisfied.

2.2 SoSAA Adaptor

The SoSAA Adaptor bridges the low-level component framework and the higher-
level agent programming language. In the context of Agent Factory, support for
this is implemented through a combination of a platform service, an agent mod-
ule, a set of actuators and perceptors and a partial agent program that links



PERCEPTOR sosaaEventMonitor { ... }
LOAD_MODULE sosaa sosaa.module.ComponentStore;

ACTION create(?id, ?type) { ... }
ACTION remove(?id) { ... }
ACTION bind(?id1, ?iface1, ?id2, ?iface2) { ... }
ACTION configure(?id, ?param, ?value) { ... }
ACTION de/activate(?id) { ... }
ACTION focus(?id) { ... }
ACTION lookup(?id) { ... }

Fig. 2. SoSAA Adaptor Code

Fig. 3. SoSAA Backchannel Management

together all the pieces and provides a basis for developing SoSAA agents. Specif-
ically, the platform service encapsulates the underlying component framework
and provides an interface through which that framework may be manipulated,
including the loading/unloading, activation/deactivation, binding, inspection,
monitoring, and configuration of components.

Access to these operations is supported through the provision of a set of
actuator units. Fig. 2 illustrates their declaration as part of a partial AFAPL2
agent program that can be reused as a basis for creating SoSAA agents. As can
be seen in this figure, this partial agent program also makes use of an agent
module. Agent modules are provided by AFAPL2 to support the creation of
resources that are private to a given agent. In this case, the module provides a
mechanism for the agent to keep track of the components that it is interested
in and also a way of accessing the events and properties that are generated by
those components. To achieve this, the sosaaEventMonitor perceptor has been
created. This perceptor converts events and properties into beliefs that can be
used at the agent level.



Fig. 4. (a) Interaction Diagram (left), and (b) AUML TransportManager’s setupRe-
moteConnection protocol (Legend: P: Communication Protocol;A: Name of component
A; AI: Name of interface for component A; B: Name of component B; BI: Name of in-
terface for component B; BA: Name of network adapter for component B) (right)

3 Example: Transport Manager

To showcase how SoSAA can be used to construct intelligent software, this sec-
tion focuses on the design and implementation of a hybrid backchannel manage-
ment infrastructure service [4]. This service provides support for the transmis-
sion of diverse types of data between internal systems nodes using heterogeneous
transport mechanisms, such as raw TCP-IP, RMI, JMS, and CORBA.

The idea of intelligent backchannel management using agents is not new,
and was previously proposed for the RETSINA architecture [10]. Backchannels
are designed to allow the flow of low-level data between agents or components.
The motivation behind this type of communication is that it does not affect the
decision-making of agents and as such, the use of expensive ACL communication
is undesirable. In SoSAA, backchannels allow components to pass data between
one another. In certain situations (e.g. the failure of a line of communication),
components may raise events to inform agents of the circumstances. Thus, since
the processing of backchannel data does not require any deliberation on the part
of an agent, it can be separated from the intentional layer of the agent.

Using SoSAA, we have designed and implemented a backchannel manage-
ment service that consists of an infrastructure agent, known as the Transport
Manager (TM) and a set of adaptor components that implement the data trans-
fer functionality for various transport mechanisms. As illustrated in Fig. 3, a
TM is deployed on each node (agent platform) of the distributed system. Appli-
cation agents, upon agreeing to make use of a backchannel, contact their local
TM and request that two components (on different nodes) be wired together
using a backchannel. Details of which transport mechanism to use and the setup
and configuration of the associated adaptor components that implement that
backchannel is delegated to the TMs.

Our backchannel management service supports two types of backchannel:
(1) push backchannels, wiring remote components where the component that
generates the data controls when the next unit of data is transmitted; and (2)



pull backchannels, wiring components where the component that receives the
data controls when the next unit of data is transmitted. Fig. 3 shows a pull
type of backchannel that has been set up based on a raw TCP-IP transport
mechanism.

Fig. 4(a) provides a high-level view of the four protocols that are required
to implement the service. Here, we ignore the application-level protocol as it
is not part of the backchannel management service, but rather represents the
application-level interaction that results in the agreement to set up of a backchan-
nel.

Once this decision is made, the two application agents contact their local
TM using the setupRemoteConnection message. This begins the connection pro-
tocol shown in Fig. 4(b). In making the initial request, the application agents
include the information necessary to set up the backchannel, namely the name
of the local and remote components; the interfaces that are to be bound to-
gether; and the name of the platform on which the remote component resides so
that the TM can locate it. As can be seen in the partial AFAPL2 code outlined
in Fig. 5 the TM responds to this request by looking up local component. The
lookup(...) action is a generic action that is part of the SoSAA adaptor described
in Section 2.2. Once invoked, it generates beliefs indicating whether or not the
given component implements a client or a server interface. Based on this, the
agent adopts a maintenance goal to set up a backchannel. The parameters asso-
ciated with this goal include the Java interface (?jI) of the component; the local
platform name (?lP), component name (?lC), and interface name (?lI); and the
remote platform name (?rP), component name (?rC) and interface name (?rI);
the adaptor name (?a); and the transport protocol (?p) (for example TCP, RMI,
or JMS). The latter two parameters are not set when the maintenance goal is
adopted (i.e. they are unbound variables). This allows the goal to be satisfied
for any given protocol and its associated adaptor.

Ultimately, the specific belief that satisfies the goal is adopted once the rele-
vant adaptor has been set up, as is shown in the setupClientConnection(..) plan
in Fig. 6. This plan implements the client side of the interaction protocol pre-
sented in Fig. 4(b). Here, TM-A is the Transport Manager responsible for the
client side while TM-B is responsible for the server side. The plan forces TM-A to

BELIEF(platformName(?lP)) &
BELIEF(message(request,?s,setupRemoteConnection(?lC,?lI,?rC,?rI,?rP))) =>
COMMIT(?self,?now,BELIEF(true), SEQ(achieve_goal(GOAL(platform(?rP, ?a))), lookup(?lC),

OR(DO_WHEN(BELIEF(clientInterface(?lC, ?lI, ?type, ?jI, ?m, ?ib, ?mb, ?b)),
MAINTAIN(GOAL(clientConnection(?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI, ?a, ?p)))),

DO_WHEN(BELIEF(serverInterface(?lC, ?lI, ?t, ?jI)),
MAINTAIN(GOAL(serverConnection(?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI, ?a, ?p)))))));

Fig. 5. Partial Transport Manager AFAPL2 code: Handling Backchannel Connection
Requests



PLAN setupTcpClientConnection(?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI) {
PRECONDITION BELIEF(platform(?rP, ?a)) & BELIEF(transport(?lP,TCP)) &

BELIEF(transport(?rP,TCP)) & !BELIEF(transportFailure(?rP,TCP));
POSTCONDITION BELIEF(clientConnection(?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI, ?a, ?p));
BODY setupClientConnection(TCP, ?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI);

}

PLAN setupClientConnection(?p, ?jI, ?lP, ?lC, ?lI, ?rP, ?rC, ?rI) {
BODY

DO_WHEN(BELIEF(message(inform, ?agentID, readyToSetupServerAdapter(?lC, ?lI))),
PAR(request(?agentID, setupServerAdapter(?p,?rC, ?rI)),

DO_WHEN(BELIEF(message(inform,?agentID,serverAdapterReady(?p,?rC,?rI,?nRA,?rip))),
PAR(createPullClientName(?lC, ?nRA),

DO_WHEN(BELIEF(uniqueName(?cAN, ?self)),
FOREACH(BELIEF(clientTransportAdapter(?p, ?jI, ?aC, ?i)),

SEQ(create(?cAN, ?aC), bind(?cAN, ?i, ?lC, ?lI), focus(?cAN),
configure(?cAN, list(SERVER(?rip), SERVER_CONNECTION(?nRA))),
ADOPT(ALWAYS(BELIEF(clientConnection(?jI,?lP,?lC,?lI,?rP,?rC,?rI,?cAN,?p)))),
activate(?lC))))))));

}

Fig. 6. Partial Transport Manager AFAPL2 code: Client-Side Adaptor Creation

wait for a readyToSetupServerAdaptor(...) inform message from its counterpart.
Upon receipt of this message, TM-A requests the setup of the actual server-side
adaptor and waits to be given connection details. When the second message is
received, TM-A generates a unique name for the client-adaptor which it then
uses to create to adaptor. The adaptor is then bound to the local component;
configured based on the information given; and monitored, via the focus action
for events, such as transport failures. Finally, the plan activates the local com-
ponent, causing the backchannel connection to be established. These final steps
are achieved through the use of SoSAA adaptor (see Section 2.2) actions. The
decision as to which adaptor should be created is based on knowledge that is
stored in a set of clientTransportAdapter(...) beliefs, which map a given proto-
col (e.g. TCP) and Java Interface (e.g. a pull client) to a component type (i.e. a
Java component implementation) and an interface. A similar plan exists for the
server-side of the connection protocol.

Finally, the intelligent selection of which transport protocol to use is achieved
through a set of custom plans that deal with each potential transport protocol.
For example, Fig. 6 shows the setupTcpClientConnection(...) plan, which simply
calls the setupClientConnection(...) plan with the protocol parameter (?p) bound
to TCP. In AFAPL2, all plans whose post-condition matches the given goal
are selected as options, and the first plan whose pre-condition is satisfied is
chosen from the set of options. Here, the precondition states that: (1) both the
local and remote platforms should have the transport protocol, and (2) that the
transport protocol should not have previously failed. Failure of a given transport
mechanism is detected through the monitoring of the adaptor, and the raising
of error events. This results in the activation of a plan that: (1) records the



Fig. 7. SoSAA Backchannel Management

failure of the transport mechanism; and (2) causes the original goal to become
unsatisfied, kicking off a new attempt by the agent to satisfy the goal.

Fig. 7 illustrates the results of a simple benchmarking test in which we mea-
sured the reaction time required by the TransportManager agent to switch be-
tween a TCP-IP connection to one based on JMS once we injected a failure in
TCP-IP network adapter. This simple experiment is based on the core work-
flow that underpins the HOTAIR Information Retrieval test-bed [11]. The figure
shows the rate of fixed-length messages exchanged between two components de-
ployed on the same machine over time. Over 10 runs, the system was able to
recover from failure with an average of 312ms.

4 Conclusions and Future Work

In this paper, we have presented an overview of ongoing work aimed at leveraging
the benefits and strengths of both AOSE and CBSE in a way that promotes the
development of high-quality applications. We have described both the rational
behind our approach and its current incarnation in the SoSAA software frame-
work, based on a combination of the Agent Factory and the JMCF component
frameworks. In particular, we have attempted to demonstrate how SoSAA can be
used to effectively construct intelligent software. By way of illustration, we have
presented the design and implementation of an intelligent backchannel manage-
ment service that has been developed using SoSAA, and showed how this service
can provide a separation of concerns between infrastructure and application-level
aspects. The service has been already used in a number of practical systems, in-
cluding an agent-based information retrieval test-bed [11] and in a multi-agent
robotics scenario [12]

Future work will investigate how an agent’s plan-selection, plan-abortion and
meta-level reasoning can be employed to implement an intelligent transport selec-
tion strategy addressing Quality of Service optimisation and system adaptation
in response to changing environmental conditions. The first step will be to cache



the transport manager usage statistics concerning the adapter components, such
as the total number of interfaces established toward each collaborating node,
their latest throughput, and the last time they were successfully (or unsuccess-
fully) used. The HOTAIR test-bed [11] will continue to be used to demonstrate
the effectiveness of our approach to a large scale, dynamic system.
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