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ABSTRACT
Data fusion is the combination of the results of independent
searches on a document collection into one single output
result set. It has been shown in the past that this can greatly
improve retrieval effectiveness over that of the individual
results.

This paper presents probFuse, a probabilistic approach to
data fusion. ProbFuse assumes that the performance of the
individual input systems on a number of training queries is
indicative of their future performance. The fused result set
is based on probabilities of relevance calculated during this
training process. Retrieval experiments using data from the
TREC ad hoc collection demonstrate that probFuse achieves
results superior to that of the popular CombMNZ fusion
algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
information retrieval, data fusion, probFuse

1. INTRODUCTION
In the past, many algorithms have been developed to

address the Information Retrieval (IR) task of identifying
which documents in a database are most relevant to a given
topic or query. More recently, researchers have focussed on
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attempting to improve upon the performance of individual
IR models by combining the outputs of a number of such
models into a single result set [15] [19] [24].

The task of fusing result sets produced by using a number
of IR models to query the same document collection has be-
come known as data fusion [1]. This is different to collection
fusion [24], which involves the fusion of result sets that have
been produced from querying distinct document collections
that have little or no overlap.

This paper is organised as follows: In section 2 we de-
scribe the problem that fusion is intended to solve. Section
3 outlines previous work that has been undertaken by other
researchers in this field. In section 4 we describe probFuse, a
novel probabilistic algorithm for data fusion. Section 5 de-
scribes our experiments to evaluate the performance of the
probFuse algorithm on inputs taken from two Text REtrieval
Conferences (TREC). We also compare this with the perfor-
mance of the popular CombMNZ approach [9]. Finally, our
conclusions and future work are outlined in section 6.

2. PROBLEM DESCRIPTION
Of the numerous approaches to IR that have been pro-

posed, none has been shown to achieve superior performance
to all others in all situations. This may be as a result of dif-
ference in policies regarding query or document preprocess-
ing, the algorithms used and representations of documents
and queries. Individual IR systems have been shown to re-
trieve different documents in response to the same queries
when operating on the same document collection [8]. This
has been observed even where the overall retrieval effective-
ness of these different systems has been similar [11].

Retrieval performance has been shown to be improved by
fusing the result sets produced by a number of different IR
systems into a single result set. A number of different ap-
proaches to data fusion are outlined in section 3.

Vogt and Cottrell [23] identify three “effects”, any of which
can be leveraged by a fusion technique. In some cases, a
number of input result sets agree on the relevance of partic-
ular documents. Fusion techniques that take this agreement
into account when compiling the fused result set will per-
form well in such circumstances. This is described as the
“Chorus Effect”. Experiments carried out by Lee [15] have



shown that this is a very significant effect for data fusion
tasks.

The exploitation of the Chorus Effect is the principal dif-
ference between the data fusion and collection fusion tasks.
For data fusion, each individual IR technique is searching
an identical document collection. This means that when-
ever a document is contained in multiple result sets, this
can be presumed to infer relevance. However, when the doc-
ument collections being searched are disjoint (collection fu-
sion), this situation clearly cannot arise. In situations where
the collections are partially overlapping, the presence of a
document in multiple result sets cannot be used as an indica-
tion of greater relevance than a document that only appears
in one. A document may only appear in a single result set
because either the other IR models did not consider it to be
relevant to the given query or it was not contained in the
other document collections. Thus, in order for a fusion tech-
nique to make use of the Chorus Effect, it must be known
that the document collections that are being queried by the
different inputs have a very high degree of overlap.

They also describe the “Skimming Effect”. Multiple result
sets are more likely to result in higher recall (i.e. the frac-
tion of relevant documents that have been retrieved) than a
single one. A fusion technique can take advantage of this by
“skimming” the top documents from each result set, as that
is where the relevant documents are most likely to occur.

The “Dark Horse Effect” is an apparent contradiction to
the Chorus Effect. Here, fusion effectiveness can be im-
proved by identifying one input result set whose quality is
of a substantially different level to the others. This may be
due to either unusually high or unusually low numbers of
relevant documents being returned. The apparent contra-
diction arises because while the Chorus Effect argues that
fusion techniques should take as many of the input result
sets as possible into account, the Dark Horse Effect argues
in favour of identifying a single input result set

3. BACKGROUND RESEARCH
There are two principal categories of fusion techniques.

Some algorithms make use of the score assigned to each
document in each input result set to calculate a final score
for that document in the fused result set. Because these
raw scores are not always directly comparable (e.g. one in-
put result set might assign scores in a range of 0-100 while
another uses 0-1), score-based techniques frequently make
use of a score normalisation phase before fusion takes place.
This typically involves the mapping of all scores to a com-
mon range. Others make use of the rank each document
occupies in each of the inputs, as the scores are not always
available.

A Linear Combination model has been used in a number
of studies [3] [6] [20] [23]. Under this model, a weight is
calculated for each input model. In order to calculate a
ranking score for a document, the score it is assigned by each
input model is multiplied by that model’s weight. These are
then summed to get the final ranking score for the fused
result set. A variation on the Linear Combination model
using normalised scores was used in [13] and [22].

A number of fusion techniques based on normalised scores
were proposed by Fox and Shaw [9]. Of these, CombSum
and CombMNZ were shown to achieve the best performance
and have been used in subsequent research. Under Comb-
Sum, a document’s score is calculated by adding the nor-

malised scores returned by the individual input models. Its
CombMNZ score is found by multiplying the CombSum
score by the number of non-zero relevance scores that it
was assigned. In particular, Lee [15] achieved positive re-
sults using CombMNZ on the TREC-3 data set. These
techniques have also been used in real-world systems: The
MetaCrawler [21] and SavvySearch [12] meta search engines
both use CombSum to fuse results.

Research by Manmatha et al. [17] demonstrated that the
scores given to documents by an IR system can be mod-
elled using a normal distribution for relevant documents
and an exponential distribution for nonrelevant documents.
This was possible even when relevance judgments were not
available for the queries in question. Using Bayes’ Rule, it
was then possible to calculate the probability of relevance,
given the score. When performing fusion, these probabilities
were averaged, producing performance approaching that of
CombMNZ.

Perhaps the simplest rank-based fusion technique is in-
terleaving [24]. Under this system, the fused result set is
constructed by firstly taking the top-ranked document from
each input result set, followed by the second-ranked docu-
ments and so on. This approach operates on the assumption
that each of the inputs are of similar effectiveness, and has
been shown empirically to fall short of its goal of outper-
forming its inputs [25]. Voorhees et al. [25] proposed two
variations on simple interleaving, in which training data was
used to weight the input models according to past perfor-
mance. At the interleaving stage, different quantities of doc-
uments were taken from each result set, depending on these
weights, rather than taking equal amounts from each.

Lee [15] proposed a rank-based variation on CombMNZ,
in which a function of each document’s rank in each input
result set was used as an alternative for normalised scores.

Aslam and Montague compared the fusion process to a
democratic election in which there are few voters (the in-
put models) and many candidates. They achieved positive
results by implementing adapted implementations of two al-
gorithms designed for that situation. Borda-fuse [2] awards
a score to each document depending on its position in each
input result set, with its final score being the sum of these.
Condorcet-fuse [18] ranks documents based on a pairwise
comparison of each. A document is ranked above another if
it appears above it in more input result sets.

Other techniques have been proposed that make use of
the actual textual content of the documents returned [7]
[14]. Others rely on the individual input models providing
metadata about the returned documents, other than simply
a ranked list with relevance scores [10].

4. PROBABILISTIC FUSION
In this section, we describe probFuse, a probabilistic ap-

proach to data fusion. ProbFuse ranks documents based on
their probability of relevance to the given query. This prob-
ability is calculated during a training phase, and depends
on which input system returned the document amongst its
results and the position in the result set in which the docu-
ment was returned.

The inputs to the fusion process are a number of collec-
tions of result sets that are produced by different IR models
running the same queries on the same document collection.
In order to run probFuse, we first build a set of probabil-
ities for each input set. These probabilities are calculated



by analysing the performance of each individual model on a
number of training queries.

Rather than using the exact position a document occu-
pies in each result set, the input result sets are divided into
x segments. For each segment, the probability that a doc-
ument being returned in this segment is relevant to a given
query is calculated. This probability is averaged over t% of
the total queries that are available.

In a training set of Q queries, P (dk|m), the probability
that a document d returned in segment k is relevant, given
that it has been returned by retrieval model m, is given by:

P (dk|m) =

PQ
q=1

|Rk,q|
|k|

Q
(1)

where |Rk,q| is the number of documents in segment k
that are judged to be relevant to query q, and |k| is the
total number of documents in segment k.

In the past, it has been demonstrated that probFuse achiev-
es significantly better results than CombMNZ when applied
to small document collections [16]. For these collections,
full relevance judgments are available, so the relevance of
every document is known during the training phase. For
larger collections, however, this is not the case, as the rele-
vance judgments are incomplete (i.e. for some documents, it
is unknown whether they are relevant or nonrelevant to the
given queries). For this reason, we also use a slight variation
of the probability calculation. This allows us to observe the
effects, if any, of different methods of dealing with unjudged
documents.

Equation 1 takes all the documents in a segment into
account, assuming unjudged documents to be nonrelevant.
Our modified probability calculation ignores unjudged doc-
uments and thus only takes into account documents that
have been judged to be either relevant or nonrelevant. In
this case, the probability P (dk|m) is given by

P (dk|m) =

PQ
q=1

|Rk,q|
|Rk,q|+|Nk,q|

Q
(2)

where |Rk,q| is the number of documents in segment k
that are judged to be relevant to query q, and |Nk,q| is the
number of documents in segment k that are judged to be
nonrelevant to query q.

We refer to probFuse runs using the probability calcu-
lation in equation 1 as probFuseAll and those using equa-
tion 2 as probFuseJudged. From these equations, it can be
seen that for document collections with complete relevance
judgments, the probabilities calculated by probFuseAll and
probFuseJudged will be identical.

After the training phase is complete and a set of proba-
bilities for each input model has been built, we can then use
this to construct a fused result set for subsequent queries.
For these, the ranking score Sd for each document d is given
by

Sd =

MX
m=1

P (dk|m)

k
(3)

where M is the number of retrieval models being used,
P (dk|m) is the probability of relevance for a document dk

that has been returned in segment k in retrieval model m,

and k is the segment that d appears in (1 for the first seg-
ment, 2 for the second, etc.). For any input model that does
not return document d in its result set at all, P (dk|m) is
considered to be zero, in order to ensure that documents do
not receive any boost to their ranking scores from models
that do not return them as being judged relevant.

This approach to data fusion attempts to make use of the
three effects described in section 2 above. By using the sum
of the probabilities, we attach more significance to docu-
ments that have been returned by multiple input models,
thus exploiting the Chorus Effect. The division by the seg-
ment number k gives a greater weight to documents that
appear early in each of the individual result sets, making
use of the Skimming Effect. Finally, because the probabil-
ities are calculated based on the actual past performance
of each input model, we attach greater importance to input
models that are more likely to return relevant documents in
particular segments (Dark Horse Effect).

5. EXPERIMENTS AND EVALUATION
In this section, we describe the experiments that were per-

formed to evaluate the effectiveness of probFuse. The prob-
Fuse algorithm was applied to a number of different com-
binations of input result sets and the resulting fused result
was compared to that of the popular CombMNZ algorithm.
CombMNZ is easily implemented and has been shown to
perform well on data fusion tasks [15]. This has made it an
attractive choice when choosing a baseline technique to com-
pare with. As such, it has become the standard algorithm
to use [4] [19].

In order to run CombMNZ, two steps must be performed.
Firstly, the scores attributed to each document by each input
must be normalised, so that they lie in a common range. A
number of different normalisation strategies have been pro-
posed. We have chosen the one used by Lee [15], as it is
the one most commonly used for comparison and has been
described as “Standard Normalisation” [18]. Lee’s imple-
mentation of CombMNZ calculates normalised scores using

normalised sim =
unnormalised sim−min sim

max sim−min sim
(4)

where max sim and min sim are the maximum and min-
imum scores that are actually seen in the input result set.
Once the scores have been normalised, CombMNZd, the
CombMNZ ranking score for any document d is given by

CombMNZd =

SX
s=1

Ns,d × |Nd > 0| (5)

where S is the number of result sets to be fused, Ns,d

is the normalised score of document d in result set s and
|Nd > 0| is the number of non-zero normalised scores given
to d by any result set.

5.1 Experimental Setup
As our inputs, we used data from the ad hoc retrieval track

of the TREC-3 and TREC-5 conferences. This data consists
of the topfile (a collection of result sets) produced by each
of the groups that participated in those conferences. Each
topfile contains result sets for 50 topics (queries): TREC-3
uses TREC topics 151-200 and TREC-5 uses topics 251-300.
40 topfiles are available for TREC-3, while 31 are available



Table 1: Inputs to TREC-3 experimental runs
first second third fourth fifth
acqnt1 clartm brkly7 assctv1 assctv2
citri1 crnlla clarta erima1 nyuir1
crnlea dortd2 dortd1 lsia0mf rutfua1
padre2 eth002 eth001 lsia0mw2 rutfua2
xerox3 nyuir2 inq101 virtu1 siems1
xerox4 padre1 pircs1 vtc2s2 westp1

Table 2: Inputs to TREC-5 experimental runs

first second third fourth fifth
brkly18 anu5man4 anu5aut2 DCU962 anu5aut1
DCU963 CLCLUS city96a1 genrl1 colm4
ETHal1 erliA1 CLTHES ibmge1 Cor5A2cr
KUSG3 genrl3 ETHas1 ibms96a LNmFull1
vtwnA1 ibms96b genrl4 KUSG2 LNmFull2
vtwnB1 uwgcx0 ibmgd2 mds003 pircsAAL

for TREC-5. Only the topfiles in Category A were consid-
ered for TREC-5, as Category B participants operated on
only a subset of the data.

For each of these two data sets, we performed 5 experi-
mental runs. Each experimental run firstly involved choos-
ing six random topfiles to use as inputs. In order to eliminate
the results being skewed by the ordering of the topics, we
produced five random orderings for the topics and performed
data fusion using both probFuse and CombMNZ over each
of these. The performance evaluation values for each run
are the average for each of those five random orderings. No
input topfile was used in multiple runs. The inputs used for
each of the five runs for TREC-3 and TREC-5 are shown in
Table 1 and Table 2 respectively. The inclusion of this list
of inputs is intended to aid the reproduction of our experi-
ments.

Each run was performed for a variety of training set sizes
defined as a percentage of the number of available queries.
In the case of the TREC-3 and TREC-5 data, the number
of available queries is always 50. The number of segments
into which each result set was divided was also varied. We
used training set sizes, t such that t ∈{10, 20, 30, 40, 50}
and numbers of segments, x such that x ∈{2, 4, 6, 8, 10, 15,
20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 400, 500}.

In order to ensure comparability, CombMNZ was only ap-
plied to those queries used in the fusion phase of probFuse,
with the training queries being ignored. This will cause the
evaluation results for CombMNZ to vary as the training set
size changes, since the number of remaining queries on which
fusion is performed also changes.

The goal of these experiments is to empirically determine
the combination of training set size and number of segments
(denoted by x) that achieves the greatest retrieval perfor-
mance, both in terms of the evaluation scores it receives
and its performance in relation to CombMNZ. We approach
this by firstly identifying a training set size that results in
high performance for both the TREC-3 and TREC-5 input
sets. This is discussed in section 5.2. Once this is done, we
examine the performance of both variations of probFuse for
different values of x to find an x-value that performs well

on both input sets when averaged over the five runs. This
is done in section 5.3.

The evaluation of the fused output result sets was per-
formed by trec eval, which is the evaluation software used
for the TREC conferences [26]. We use two evaluation mea-
sures in our experiments. Firstly, we use Mean Average
Precision (MAP) to find our training set size and x-value.
MAP is the mean of the precision scores obtained after each
relevant document is retrieved, using zero as the precision
for relevant documents that are not retrieved [5]. Docu-
ments for which a relevance judgment is not available are
considered to be nonrelevant.

After identifying this training set size and x-value, we
then examine each of the five experimental runs to make
a comparison with the CombMNZ algorithm in a more de-
tailed manner. At this stage, in addition to MAP we also
make use of the bpref evaluation measure. Bpref only takes
judged documents into account and is inversely related to
the fraction of judged nonrelevant documents that are re-
trieved before relevant documents [5]. The analysis of these
evaluation results is contained in section 5.4.

5.2 Training Set Size
Initially, the MAP measure was used to identify which

training set sizes resulted in the best performance. Ta-
ble 3 and Table 4 show the average MAP achieved when
using each training set size, along with its improvement over
the corresponding figure for CombMNZ. The MAP score in-
cluded in those figures is the average MAP score for all val-
ues of x (the number of segments) at that training set size
over all five runs. The average MAP scores for CombMNZ
vary with training set size, despite CombMNZ not making
use of any training phase. In each of those tables, the highest
MAP score and the greatest improvement over CombMNZ
for each of the probFuse variants are marked in bold type.

Figure 1: TREC-3 MAP scores for t = 50% (average
over 5 runs)

From Table 3, we can see that the highest average MAP
score by both probFuse variations on the TREC-3 inputs was
achieved using a training set size of 30%. The biggest per-



Table 3: TREC-3 Average MAP scores for various training set sizes
Training t% CombMNZ probFuse Difference probFuse Difference

All v. MNZ Judged v. MNZ
10% 0.29593 0.33885 +14.50% 0.33988 +14.85%
20% 0.29738 0.34146 +14.82% 0.34312 +15.38%
30% 0.30134 0.34628 +14.91% 0.34830 +15.58%
40% 0.29753 0.34307 +15.31% 0.34517 +16.01%
50% 0.29557 0.34230 +15.81% 0.34445 +16.54%

Table 4: TREC-5 Average MAP scores for various training set sizes
Training t% CombMNZ probFuse Difference probFuse Difference

All v. MNZ Judged v. MNZ
10% 0.17842 0.26011 +45.79% 0.25987 +45.65%
20% 0.17604 0.25959 +47.46% 0.26020 +47.81%
30% 0.17528 0.25842 +47.43% 0.25937 +47.98%
40% 0.17720 0.25959 +46.50% 0.26056 +47.04%
50% 0.17712 0.26061 +47.14% 0.26175 +47.78%

Figure 2: TREC-5 MAP scores for t = 50% (average
over 5 runs)

centage increase over CombMNZ was when using a training
set size of 50%. For the TREC-5 inputs (seen in Table 4),
we note that the highest average MAP score was when using
a training set size of 50%. The greatest percentage improve-
ment over CombMNZ was achieved for training set sizes of
20% and 30% for probFuseAll and probFuseJudged respec-
tively.

Both variations of probFuse achieve higher average MAP
scores than CombMNZ for every training set size. This is
the case for both the TREC-3 and TREC-5 input sets.

For the purposes of Section 5.3, we have chosen to use
a training set size of 50%. At that level, probFuseAll and
probFuseJudged both achieve either their highest MAP score
or their highest increase over CombMNZ for both sets of in-
puts. This would not be the case had we chosen a training
set size of 30%, as probFuseAll achieves its biggest improve-

ment over CombMNZ at a training set size of 20%. At
50%, both probFuse variations achieve their highest aver-
age MAP scores on the TREC-5 inputs. For the TREC-3
inputs, both variations achieve their highest improvement
over CombMNZ, and their average MAP scores are within
2% of the highest they achieve at any level.

5.3 Number of Segments
Figure 1 and Figure 2 show the MAP scores for each num-

ber of segments for a training set size of 50% for the TREC-3
and TREC-5 inputs respectively. Each of these MAP scores
is the average of the MAP scores achieved in each of the five
runs.

It is interesting to note that probFuseJudged and prob-
FuseAll both show near-identical results for both input sets.
In each graph, performance is at its worst for a value of
x = 2. This is to be expected, as in that situation, each
result set is being divided into only two segments, so the
probability of relevance being assigned to each document is
based on whether it appears in the first or second half of
the result set, which is too coarse a measure. Initially, as
x increases, the average MAP score improves. A gradual
decline is then seen for higher values of x.

The principal difference in the trend in the two graphs
is in the point at which the average MAP score reaches its
peak. This peak is reached for a much lower x-value on the
TREC-3 inputs, where x = 15. For TREC-5, the MAP score
continues improving gradually until the point where x = 90.
Thereafter, both show a downward trend as x increases.

An x-value of 25 yields the best MAP score, on average,
over both input sets. For that reason, this is the x-value
we have chosen to use when analysing the individual runs in
section 5.4.

5.4 Analysis of Individual Runs
Having identified a high-performing training set size (50%)

and number of segments to divide each result set into (25),
we can examine the five individual experimental runs in
more detail.

Table 5 shows the results of the five individual runs on
the TREC-3 input set. In that table, figures in parenthe-



Table 5: TREC-3 performance of five individual runs for t = 50% and x = 25
CombMNZ probFuseAll probFuseJudged
MAP bpref MAP bpref MAP bpref

first 0.16726 0.23960 0.30988 (+85.27%) 0.31458 (+31.29%) 0.31144 (+86.20%) 0.31628 (+32.00%)
second 0.28752 0.33434 0.34100 (+18.60%) 0.33118 (-0.95%) 0.34402 (+19.65%) 0.33356 (-0.23%)
third 0.43344 0.41222 0.41348 (-4.61%) 0.39222 (-4.85%) 0.41620 (-3.98%) 0.39416 (-4.38%)
fourth 0.23416 0.31048 0.30374 (+29.71%) 0.30314 (-2.36%) 0.30766 (+31.39%) 0.30528 (-1.67%)
fifth 0.35548 0.39616 0.39108 (+10.01%) 0.38006 (-4.06%) 0.39294 (+10.54%) 0.38308 (-3.30%)
Average 0.29557 0.31707 0.35184 (+19.04%) 0.34804 (+9.77%) 0.35445 (+19.92%) 0.35046 (+10.53%)

ses represent the percentage difference to the corresponding
score for CombMNZ. Figure 3 shows the MAP scores for
CombMNZ, probFuseAll and probFuseJudged for each run
on the TREC-3 data, and figure 4 shows the bpref scores for
TREC-3.

Both variants of probFuse achieved a higher MAP score
than CombMNZ for all runs except for “third”. On that run,
CombMNZ scored slightly higher. It is important to high-
light that both probFuse variations actually achieve their
highest MAP scores for that run. The MAP score for Comb-
MNZ is also the highest it achieves for any run. The lower
MAP score achieved by probFuse on the “third” run can
therefore be attributed to an unusually high MAP score be-
ing achieved by CombMNZ on that run, rather than prob-
Fuse underperforming.

Using the bpref measure, the performance of probFuse is
slightly below that of CombMNZ for four of the five runs.
For this reason, it cannot be said that probFuse outperforms
CombMNZ on the TREC-3 inputs under bpref. However,
neither probFuse variant drops below 95% of CombMNZ’s
bpref score on any run, and for the “first” run, probFuse
achieves a vastly superior result, leading to a better average
performance.

Under both the MAP and bpref measures, probFuseJudged
achieves higher performance than probFuseAll on each of the
five experimental runs. However, this increase only exceeds
1% for the MAP score on the “fourth” run, and never ex-
ceeds 2%.

Table 6 shows a similar table detailing the five individual
experimental runs on the TREC-5 input set. Figure 5 shows
the MAP scores for CombMNZ, probFuseAll and probFuse-
Judged for each run on the TREC-5 data, and figure 6 shows
the bpref scores for each fusion technique.

Here, probFuse outperforms CombMNZ on each of the
runs using both evaluation measures. In particular, runs
“second”, “third” and “fifth” show large performance gains
for both probFuse variations over CombMNZ for both the
MAP and bpref measures.

As with TREC-3, probFuseJudged performs better than
probFuseAll, although once again the degree of improvement
is less than 1% in almost all cases. The exception to this is
the MAP score for the “first” run, which is the only case
where probFuseAll performs better than probFuseJudged.
This is particularly interesting in the case of the bpref scores,
as bpref only takes judged documents into account, ignoring
documents for which relevance judgments are not available.
For this level of incompleteness, the performance of prob-
FuseAll is similar to that of probFuseJudged. It is left to
future work to determine if this remains the case as the
available relevance judgments become more incomplete.

Figure 3: TREC-3 MAP scores for t = 50% and x =
25

Figure 4: TREC-3 bpref scores for t = 50% and x = 25

The performance on the TREC-3 inputs is superior to
CombMNZ when evaluated using the MAP measure, with
the bpref scores falling only slightly below those of CombMNZ
in some cases. For the TREC-5 inputs, probFuse has shown
significant improvement over CombMNZ when evaluated by
both MAP and bpref.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described probFuse, a data fusion

algorithm that relies on the probability of relevance to cal-



Table 6: TREC-5 performance of five individual runs for t = 50% and x = 25
CombMNZ probFuseAll probFuseJudged
MAP bpref MAP bpref MAP bpref

first 0.25144 0.26406 0.27378 (+8.88%) 0.26814 (+1.55%) 0.26264 (+4.45%) 0.26878 (+1.79%)
second 0.22480 0.26896 0.35560 (+58.19%) 0.33918 (+26.11%) 0.35844 (+59.45%) 0.34140 (+26.93%)
third 0.12306 0.19232 0.26838 (+118.09%) 0.24744 (+28.66%) 0.27050 (+119.81%) 0.24920 (+29.58%)
fourth 0.12626 0.14520 0.15546 (+23.13%) 0.15734 (+8.36%) 0.15602 (+23.57%) 0.15746 (+8.44%)
fifth 0.16004 0.21790 0.27842 (+73.97%) 0.26474 (+21.50%) 0.27922 (+74.47%) 0.26498 (+21.61%)
Average 0.17712 0.19740 0.26633 (+50.37%) 0.25537 (+29.37%) 0.26787 (+51.24%) 0.26212 (+32.79%)

Figure 5: TREC-5 MAP scores for t = 50% and x =
25

Figure 6: TREC-5 bpref scores for t = 50% and x = 25

culate a ranking score for documents in a fused result set.
These probabilities are calculated based on the position of
relevant documents in result sets returned in response to a
number of training queries.

In experiments using data from the ad hoc track of the
TREC-3 and TREC-5 conferences, two variations of prob-
Fuse were shown to significantly outperform the popular
CombMNZ algorithm over a number of different combina-
tions of inputs. ProbFuseAll achieved a MAP score that was,
on average, 19% higher than CombMNZ on the TREC-3 in-

puts and 50% higher on TREC-5. Similarly, the average
bpref score was 10% higher than CombMNZ on TREC-3
inputs and 29% higher on TREC-5.

These results follow on from experiments on small doc-
ument collections for which complete relevance judgments
are available [16]. Due to the incomplete nature of the rel-
evance judgments for TREC-3 and TREC-5, we also tested
a variation of probFuse, called probFuseJudged, that only
takes judged documents into account when calculating its
probabilities. ProbFuseJudged achieved an increase of 11%
over CombMNZ on the TREC-3 inputs and an increase of
31% on TREC-5. The MAP scores it achieved were 20%
higher than CombMNZ on TREC-3 and 51% higher on the
TREC-5 data.

It is interesting to note that probFuseJudged only achieved
marginal performance gains over probFuseAll, even using the
bpref evaluation measure, which only takes judged docu-
ments into account.

Our future work will apply probFuse to larger collections
with greater levels of incompleteness in their available rel-
evance judgments (e.g. the Web track collections of later
TREC conferences). We intend to investigate whether the
performance of probFuseJudged and probFuseAll diverges as
the level of incompleteness increases. In addition, the rele-
vance judgments for some collections differentiate between
different degrees of relevance (e.g. for the WT10G collec-
tion, documents can be judged nonrelevant, relevant and
highly relevant). We also intend to investigate whether ad-
justments to our probability calculations that take this in-
formation into account will be beneficial.

Another potential research direction is to investigate the
possibilities of applying probFuse to a document collection
without the necessity of using training data from that collec-
tion. This could potentially involve the use of the techniques
outlined by Manmatha et al. [17] to estimate the probabil-
ity of relevance, or alternatively training probFuse on one
document collection in order to apply it to another.
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