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Abstract. Information Retrieval (IR) forms the basis of many information man-
agement tasks. Information management itself has become an extremely important
area as the amount of electronically available information increases dramatically.
There are numerous methods of performing the IR task both by utilising different
techniques and through using different representations of the information available
to us. It has been shown that some algorithms outperform others on certain tasks.
Very little progress has been made in fusing various techniques to improve the overall
retrieval performance of a system. This paper introduces a probability-based fusion
technique probFuse that shows initial promise in addressing this question. It also
compares probFuse with the common CombMNZ data fusion technique.
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1. Introduction

Numerous Information Retrieval models have been proposed to solve
the problem of identifying documents in a collection that are relevant
to given queries. These IR techniques typically assign a score to each
document in a collection. This score is a judgment of that document’s
relevance to the given query. A list of documents, ranked according
to this relevance score, is then returned. These ranked lists are known
by numerous names in the relevant literature. For consistency, we will
refer to them as result sets, as in (Beitzel et al., 2004).

No single approach to IR has been demonstrated to achieve supe-
rior performance to all others in all situations. Individual IR systems
will retrieve different documents from the same document collection in
response to the same query (Das-Gupta and Katzer, 1983). This may
be a result of differing methods of representing documents and user
queries, different document and query preprocessing steps and different
algorithms used to rank documents. This is illustrated by the entries
for the TREC-1 conference, many of which achieved approximately
the same performance level despite returning substantially different
documents in their result sets (Harman, 1993).
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The combination of result sets produced by a number of different IR
algorithms has been shown to improve retrieval performance (Bartell
et al., 1994). This has become known as “data fusion” (Aslam and
Montague, 2000). Because some IR algorithms will return documents
that are not returned by others, combining numerous result sets in the
correct way will lead to a greater number of relevant documents being
presented to the user. Additionally, it has been shown that the presence
of a document in the results returned by a number of IR systems reflects
an increased probability that it is relevant to the given query (Saracevic
and Kantor, 1988).

The term “data fusion” specifically refers to the use of a number
of different IR systems to retrieve documents from the same document
collection and the combination of their result sets using any informa-
tion that is available in order to achieve superior results. This is in
contrast to related tasks such as “collection fusion”, where the docu-
ment collections being searched are distinct (Voorhees et al., 1994) and
situations where there is only partial overlap between the document
collections (Wu and Crestani, 2004), although research in these areas
is also relevant to data fusion.

In order to perform data fusion, a number of solutions have been
proposed. Some of these rely on the relevance scores provided by the
individual retrieval sources, some make use of the ranking of the in-
dividual result sets alone and others introduce weightings to create a
bias to favour some sources over others.

In many cases, such research has been in the context of meta search
engines (Voorhees et al., 1994), which involve the fusion of result sets
produced by distinct, autonomous IR systems. Because these search
engines are designed to act in a standalone fashion, rather than being
specifically designed for use by a meta search engine, relevance scores
are not necessarily made available to the meta search algorithm. Sim-
ilarly, information about the contents of the database each engine has
access to is typically unavailable.

Our research is aimed at combining results from multiple IR al-
gorithms running on the same document collection within the same
system. The HOTAIR (Highly Organised Teams of Agents for Infor-
mation Retrieval) architecture is an extensible and scalable multi-agent
architecture for the discovery, retrieval and indexing of documents from
multiple information sources (Mur et al., 2005) (Peng et al., 2005). Our
research on fusion is intended for use within this system.

This paper is organised as follows: in section 2, we provide an overview
of some of the approaches that have been taken by others in solving the
fusion problem in the past. Section 3 details the problem in question.
In section 4 we introduce the probFuse algorithm, a probability-based
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approach to data fusion. Section 5 describes the results of running
probFuse on a number of collections, along with a comparison with
the popular CombMNZ fusion technique (Lee, 1997). We conclude in
section 6 and discuss possible directions for further study.

2. Prior Work

An early, simple method of merging distinct result sets is to interleave
the results in round-robin fashion (Voorhees et al., 1994), whereby the
first-ranked documents are placed at the beginning of the merged set,
followed by the second-ranked documents and so on. The effectiveness
of this method is largely dependent on the rather naive assumption that
the result sets are of equal quality. An empirical study (Voorhees et al.,
1995) demonstrates a 40% degradation in effectiveness when compared
to the performance of a single centralised collection.

Voorhees et. al. suggested two variations to interleaving: Model-
ing Relevant Document Distributions and Query Clustering (Voorhees
et al., 1995) (Voorhees and Tong, 1997). The key focus of both was to
use training data to predict which input systems were most likely to
return the best results. A greater proportion of higher-ranked systems’
result sets were used in the fused result set. Once the documents to
be fused had been identified, they were fused in a weighted fashion.
For each position in the fused result set, a system was first chosen by
rolling a C-sided die, biased by the number of documents remaining in
each of the C result sets. Once a system was chosen, the first document
remaining in its set was inserted into the fused set. This had the effect
of preserving the rankings returned by each individual system and
giving priority to those systems judged most likely to return relevant
documents.

The two algorithms only differ in their methods of ranking the input
systems. Both rely on comparing the given query to training queries.
In the Modeling Relevant Document Distributions algorithm, the query
is compared (using cosine similarity) with each training query and the
number of documents to be taken from each result set is based on the
peformance of each information source for the queries that are most
similar to the given query. The Query clustering algorithm involves
creating centroid clusters with the training queries, based on the num-
ber of retrieved documents that queries have in common. In this case,
the number of documents to take from each result set is based on the
performance of each system for the queries in the cluster that the given
query is closest to.
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A number of later approaches rely on the relevance scores assigned
by each retrieval technique to each document in order to rank those
documents appropriately. The relevance scores returned by each IR
model are not necessarily comparable in their raw form, since each will
typically return scores in different ranges. In order to compare these
scores in a meaningful way, it is necessary to normalise them, so that
they lie within a common range.

A number of fusion techniques based on normalised scores were
proposed by Fox and Shaw (Fox and Shaw, 1994). These included
CombSUM, in which the ranking score for each document is the sum
of the normalised scores returned by the individual techniques, and its
variant CombMNZ, which introduces a bias in favour of documents
which are judged relevant by a higher number of individual techniques.
CombMNZ has become the standard data fusion technique (Beitzel
et al., 2004) (Montague and Aslam, 2002), as it has been shown to out-
perform the other techniques proposed by Fox and Shaw. In particular,
Lee (Lee, 1997) was able to achieve significant improvements by using
CombMNZ.

The fusion technique used by the MetaCrawler meta search engine
(Selberg and Etzioni, 1997) is the same as CombSUM, with a slightly
different normalisation scheme to that used by Shaw and Fox. Savvy-
Search (Howe and Dreilinger, 1997) also uses CombSUM, although
some adjustments are made for documents for which relevance scores
are not available.

CombMNZ has also been used with alternative methods of normalis-
ing scores (Montague and Aslam, 2001) and also using document ranks
to produce normalised scores, where relevance scores are not available
(Lee, 1997).

Wu and Crestani (Wu and Crestani, 2004) proposed “Shadow Doc-
ument” methods of fusion. The focus of their work was partially over-
lapping databases. In that scenario, algorithms that use a document’s
presence in multiple result sets as evidence of relevance cannot be used.

The score assigned to each document for fusion purposes is the sum
of its normalised scores in each result set. If a document appears in one
result set but not another, it is assumed that a “shadow document” of
it appears in the one it doesn’t itself appear in. This shadow document
is assigned a score which is based on its normalised score in the result
set it does appear in and also on a coefficient. This coefficient can either
be determined empirically or as a function of the degree of overlap of
the result sets.

The Linear Combination model involves a weight being calculated
for each input system. That weight then is multiplied by each document
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score in the relevant result set, with the final fused score for a document
being the sum of these weighted scores.

A Linear Combination model was used in (Callan et al., 1995), where
the weight of each input system was a function of the score calculated by
the CORI algorithm (an algorithm for ranking IR systems for particular
queries to ascertain which are most likely to produce the best results).
This was also used in (Powell et al., 2000) and a variation that also
used normalised relevance scores was used in (Si and Callan, 2002) and
(Larkey et al., 2000).

A different weighting system was proposed in (Rasolofo et al., 2001).
Named LMS (using result Length to calculate Merging Score), it relied
on the number of documents returned by each input system. This was
based on the hypothesis that systems returning more documents are
more likely to be providing better results. Under LMS, the weight given
to each input system is the number of documents returned by it, relative
to the number returned by the other systems. Its principal advantage
lies in its simplicity since no prior knowledge of the input systems is
necessary.

In (Wu and Crestani, 2002), the WSUM (Weighted SUM) tech-
nique calculates three possible weights to be assigned to input systems:
‘good’, ‘fair’ and ‘poor’. The appropriate weight for each is calculated
by testing how much agreement there is between systems. For each
system, they take the top N documents in its result set and sum the
number of occurrences of these documents in all other result sets. The
categorisation of a system as ‘good’, ‘fair’ or ‘poor’ is based on how
this score compares with the average for all systems. The score used for
each document for fusion was a linear combination of the document’s
normalised score and the weights of the appropriate input systems. A
variation of this for situations where scores were not available was also
proposed. Here, a score was calculated based on the ranking of the
document in the result sets and the linear combination was performed
based on that.

Aslam and Montague have proposed two fusion algorithms that are
based on algorithms designed to identify successful candidates in demo-
cratic elections where there are more than two candidates. Borda-fuse
(Aslam and Montague, 2001) is based on an election model designed for
a situation where there are many candidates, but few voters. They use
the analogy that the voters are equivalent to the input systems being
used and the candidates are represented by the documents retrieved.

With Borda-fuse, each voter ranks a set of c candidates in order of
preference. The top ranked candidate is awarded c points, and the score
for each candidate decreases by one as we progress down the list. The
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total score for any one candidate is the sum of the points awarded to
it by all the voters.

The other voting model they proposed is Condorcet-fuse (Montague
and Aslam, 2002). Under the traditional Condorcet algorithm, the win-
ner is the candidate that beats or ties with every other candidate in a
pairwise comparison. It must be adapted slightly for fusion, since the
goal is not merely to identify the top-ranked document but the desire
to include all documents in a ranked list.

Condorcet-fuse firstly creates a list of all documents returned by any
input system. It then uses the QuickSort algorithm with the comparison
function being the relative ranking of documents in each system. A
document will be ranked above another if it is ranked higher in more
of the input result sets.

Weighted versions of each of these algorithms were also proposed.

3. Problem Description

The characteristics of fusion are outlined by Vogt and Cottrell (Vogt
and Cottrell, 1999). If the individual result sets contain different docu-
ments, this is likely to increase recall (the fraction of total relevant doc-
uments that have been retrieved). They describe this as the “Skimming
Effect”, as a fusion technique would “skim” the top-ranked documents
from each result set, since the highest density of relevant documents is
most likely to appear there. They also describe the “Chorus Effect”,
in which several retrieval sources are in agreement that a document is
relevant. In situations where this agreement is correct, fusion techniques
which attach a greater significance to documents which are common to
multiple sources will perform well. Research involving the CombMNZ
algorithm has shown that the Chorus Effect is very significant in data
fusion tasks.

They also identify a “Dark Horse Effect”, in which one retrieval
approach returns results of a much different quality than the others.
This may either be the returning of unusually accurate or inaccurate
relevance judgments. It is noted that the Chorus and Dark Horse effects
are somewhat contradictory in nature, with the former encouraging
fusion techniques to take as many sources into account when fusing
and the latter suggesting that a single technique may provide the best
performance.

The degree to which any of these effects is important is dependent
on the type of input system producing the result sets. Fusion techniques
that attempt to make use of the Chorus Effect can only do so when the
databases available to the individual input systems contain the same
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documents. The reason for this is the treatment of documents that
are returned in one result set but not another. If there is only partial
overlap between the databases, such a situation can be explained by
one of the following:

1. The document is contained in both databases but is not considered
to be relevant to the query by one system.

2. The document is only contained in one database and so can only
possibly be returned by one system.

Clearly, in this situation, the presence of a document in multiple
result sets cannot be reliably used as evidence of relevance. The Chorus
Effect will also have no influence on fusion where the databases are
disjoint, as no document will appear in multiple result sets.

Our research focuses on different IR models running on identical
document collections, and so it is desirable for our fusion techniques
to leverage the Chorus Effect. This has become known as data fu-
sion (Aslam and Montague, 2000), as distinct from collection fusion
(Voorhees et al., 1994), which relates to fusion of result sets from
disjoint databases.

If we have a system in which we use multiple IR models, it is
likely that different models will perform better on different queries.
In addition, it is unlikely to be possible to identify which technique
will produce the best performance on any specific query. For these
reasons, it is desirable to be able to combine the results returned by
each model in order to achieve results that are superior to any of the
individual techniques. An acceptable minimum performance level would
be to match the best performing technique for each query.

When evaluating our probFuse algorithm in section 5, we use the
maximum precision achieved by any single technique at each point of
recall as the benchmark to be improved upon. An ability to improve
upon this benchmark supports the case in favour of fusion, rather than
merely creating an algorithm to attempt to select the best individual
technique for a given query.

4. Probability-Based Fusion

In this section, we describe probFuse, a probability-based approach to
fusing results from different Information Retrieval models within the
same system. Using this approach, each document contained in any of
the individual result sets to be fused is assigned a score, based on its
probability of relevance, which is used in ranking the documents in the
final, fused result set.
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Running probFuse requires that relevance judgments are available.
These are lists of documents compiled by human judges that indicate
which documents in the collection are relevant to the given queries.
Using these judgments, the performance of each individual IR model
on a number of training queries can be analysed and the probability
that a document returned by a particular model is relevant can be
calculated.

In order to calculate this probability, each result set is divided into
x segments. Using a training set comprising t% of the queries available,
the probability of relevance for each segment must be calculated.

Figure 1 shows an example of segmenting a result set using three
different values of x. This result set can be considered to have been
produced by a single IR model that has ranked twelve documents from
the document with the highest relevance score (d12 ) to the document
with the lowest relevance score (d27 ). Taking document d215 as an
example, we can see that for a value of x = 2 (i.e. the result set is
divided into two segments), it appears in the second segment of the
result set. For x = 3, it is still in the second segment, moving to the
third for x = 4.

In a training set of Q queries, P (dk|m), the probability that a docu-
ment d returned in segment k is relevant, given that it has been returned
by retrieval model m, is given by:

P (dk|m) =
∑Q

q=1
Rk,q

K

Q
(1)

where Rk,q is the number of documents in segment k that are judged
to be relevant to query q, and K is the total number of documents in
segment k.

This probabilty should be calculated for each segment in each re-
trieval model.

The ranking score Sd for each document d is given by

Sd =
M∑

m=1

P (dk|m)
k

(2)

where M is the number of retrieval models being used, P (dk|m) is
the probability of relevance for a document dk that has been returned
in segment k in retrieval model m, and k is the segment that d appears
in (1 for the first segment, 2 for the second, etc.). For any technique
that does not return document d in its result set at all, P (dk|m) is
considered to be zero, in order to ensure that documents do not receive
any boost to their ranking scores from techniques that do not return
them as being judged relevant.
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Figure 1. Segmenting a result set for different values of x

Using the segment a document is returned in, rather than the specific
rank, recognises that different queries will likely produce result sets of
varying lengths, depending on how common the terms in the query are.
For example, a document ranked 10th in a 20-document result set is
less likely to be relevant than the 10th in a 200-document result set.

This approach strives to balance the three effects identified by Vogt
and Cottrell (Vogt and Cottrell, 1999). Firstly, by considering the prob-
ability of relevance, we make use of the Dark Horse effect, by attaching
a greater importance to techniques which are more likely to return
relevant documents in particular segments. Secondly, by using the sum
of the scores from each individual technique, rather than the maximum,
we make use of the Chorus effect in a similar way to CombMNZ. Finally,
the division by k attaches a greater weight to documents returned near
the beginning of the result set, where retrieval techniques will typically
have their highest density of relevant documents (Skimming Effect).
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Table I. Characteristics of Document
Collections Used

Collection Documents Queries

Cranfield 1,400 225

LISA 5,872 35

Med 1,033 30

NPL 11,429 93

5. Experiment and Evaluation

In this section, we describe a number of experiments which were run
in order to test the effectiveness of the probFuse algorithm. Firstly, we
use various training set sizes and x values (the number of segments
each result set should be divided into) in order to find optimal values
for each. Once these have been identified, we compare the results with
that of Shaw and Fox’s CombMNZ algorithm.

The experiments were run over four document collections: Cranfield,
LISA, NPL and Med. The characteristics of each collection are outlined
in Table I. One reason for selecting these collections is that complete
relevance judgments are available for them, making it easier to calculate
the probabilities for each segment in the training phase. It is likely that
the generation of useful probabilities would be more difficult with larger
collections where the relevance judgements are incomplete and we leave
such experiments for future work.

Initially, the queries for each collection were arranged in a random
order. Once this was done, this order was maintained for each experi-
mental run, in order to eliminate inconsistencies of results arising from
a change in the ordering of the queries. We then obtained the result sets
to be fused using three Information Retrieval models: the Vector Space
Model (Salton and Lesk, 1968), the Extended Boolean Model (Salton
et al., 1983) and the Fuzzy Set Model (Baeza-Yates and Ribeiro-Neto,
1999). We then ran probFuse on each, using various training set sizes
and x values.

The training set sizes used ranged from 10% to 90% inclusive, in
intervals of 10 percentage points. For each of those training set sizes,
we ran probFuse with x values of 2, 4, 6, 8, 10, 20, 30, 40 and 50.

In order to evaluate the performance of our experiments, we firstly
calculated the interpolated precision at the 11 standard recall levels
(Baeza-Yates and Ribeiro-Neto, 1999) (0% to 100% inclusive, at in-
tervals of 10 percentage points) for the result set returned for each
document collection by each individual retrieval model and also for the
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fused result set. Once this is done, ∆Pc, the mean difference in precision
for collection c is given by

∆Pc =
∑R

r=1 Pf,r − MAX(Pc,r)
R

(3)

where R is the number of standard recall levels, Pf,r is the precision
of the fused result set at recall level r and MAX(Pc,r) is the maximum
precision obtained by any single retrieval model on collection c at recall
level r. The single value used in Figures 2 and 3 is the average ∆Pc

across all four collections.
Using this evaluation measure ensures that fused result sets are com-

pared with the best precision at each recall level, rather than a single,
overall measure. For example, we may have one technique that achieves
high levels of precision at low recall but which drops significantly as
recall increases. Another technique may initially achieve lower levels
of precision but suffers less degradation as recall increases. This may
lead to the second technique having greater precision than the first at
higher levels of recall. In this situation, both techniques will be taken
into account when calculating the mean change in precision, as we
consider the technique that has the highest level of precision for each
level of recall.

Figure 2 shows the change in average precision for the various values
of x and t with each line representing a particular training set size. The
poorest-performing training set sizes are 10% and 90%, demonstrating
that training set sizes that are either very large or very small will lead
to poor performance. Using a training set size of 50% yields consistently
superior performance to the other training set sizes and results in the
best performance for almost all values of x.

In Figure 3, each line represents the change in average precision for a
particular value of x. The worst-performing x value is 2. At this value,
probability of relevance is assigned to a document based on whether
it appears in the first half or the second half of a result set. This is
clearly too coarse a measure, as the results show. Increasing values
for x produce superior results, to a point, with x values of 10 and 20
showing the highest mean precision increases.

From these two graphs, we can see that the best performance is
achieved using a training set size of 50% and dividing each result set
into 20 segments.

Having identified the best-perfoming combination of x and t values,
we then performed a comparison of those results and the CombMNZ
algorithm. CombMNZ was selected as the technique for comparison, as
it has been shown to perform well on data fusion tasks by exploiting
the Chorus Effect (Lee, 1997).
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Figure 2. Mean difference in precision for different training set sizes

Figure 3. Mean difference in precision for different values of x
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Table II. Comparison of the mean dif-
ference in precision achieved by the
probMerge and CombMNZ algorithms
for each collection. Entries marked
with “*” are statistically significant
for a significance level of 5%. Entries
marked with “**” are statistically sig-
nificant for a significance level of 1%,
as calculated by the Wilcoxon test

probFuse CombMNZ

Cranfield +1.92** -1.48*

LISA +3.09** +2.24

Med +3.48 +3.07

NPL +4.80** +4.13**

Max +4.80 +4.13

Min +1.92 -1.48

Avg +3.32 +1.99

The CombMNZ algorithm is based on the relevance scores assigned
to each document by each retrieval model. However, the raw scores
returned by each model are not necessarily directly comparable, so it
is necessary to normalise them to a common scale. Numerous methods
of normalising relevance scores have been proposed. Here, we follow
the method used by Lee for calculating normalised scores, which has
been described by Montague and Aslam as “Standard Normalisation”
(Montague and Aslam, 2001). Lee’s implementation of CombMNZ nor-
malised scores using

normalised sim =
unnormalised sim − min sim

max sim − min sim
(4)

where max sim and min sim are the maximum and minimum score,
respectively, that are actually seen in the retrieval result. Once the
scores have been normalised, the CombMNZd, the CombMNZ ranking
score for any document d is given by

CombMNZd =
S∑

s=1

Ns,d ∗ |Nd > 0| (5)

where S is the number of result sets to be fused, Ns,d is the nor-
malised score of document d in result set s and |Nd > 0| is the number
of non-zero normalised scores given to d by any result set.
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Table II shows a comparison in the mean difference in precision for
probFuse and CombMNZ, where probFuse uses a training set of 50%
and an x value of 20. As the first half of the available queries for each
collection are being used solely as training data by probFuse, we have
ignored them for the purposes of CombMNZ, so that we are comparing
the two algorithms’ performance over the same queries.

The table shows the mean difference in precision both for each
collection individually and as an overall average. We can see that prob-
Fuse outperforms CombMNZ on each collection, and that the use of
CombMNZ actually causes a significant reduction in performance when
applied to the Cranfield collection. For all collections except Med,
probFuse shows highly significant improvements over the maximum
precision values of the individual techniques. In contrast, CombMNZ
achieves significant improvements for the NPL collection alone.

Figure 4 illustrates the performance of probFuse and CombMNZ
on the Cranfield collection. It shows the interpolated precision at the
standard recall levels for each of the three individual techniques, as well
as for each of the two fusion techniques.

Figure 4. Interpolated Precision graph for the Cranfield collection
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6. Conclusions and Future Work

In this paper, we have proposed a new data fusion technique, probFuse.
Using this algorithm, documents are ranked based on their probability
of relevance. This probability is calculated based on the performance
of the underlying IR models on a number of training queries. In experi-
ments on small collections, probFuse shows initial promise, outperform-
ing the best performance of any of the individual retrieval models that
we used, namely the Vector Space Model, the Fuzzy Set Model and
the Extended Boolean Model. It also was shown to produce superior
results to the popular CombMNZ algorithm.

While probFuse shows promise on these small collections, it re-
mains to be seen whether the increase in retrieval effectiveness achieved
on small collections can be replicated on larger document collections,
such as data from the Text REtrieval Conferences (TREC), which is
widely used to evaluate fusion techniques. The lack of availability of
full relevance judgements, particularly for the larger TREC collections,
may require adjustments to the methods that we are currently using
to calculate segment probabilities. In that situation, most evaluation
measures assume documents for which a judgment is unavailable to
be non-relevant. However, for the purposes of calculating probabilities
based on a training set, this may not be a reasonable assumption to
make. For this reason, it may be necessary to calculate the probabilities
based on the number of judged documents in each segment, rather than
the total number of documents appearing in each segment.

The next stage in our research is to compare the performance of
probFuse against that of other data fusion techniqes using the larger
TREC document collections. A successful outcome to this comparison
would allow the investigation of the effects of training probFuse on
one document collection and performing fusion on another. Ultimately,
the aim of this research is to train probFuse on existing document
collections for which relevance judgments are available (such as the
TREC Web Track) and apply it to large-scale domains such as web
search and corporate intranets
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