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Abstract. Recent developments in the field of data fusion have seen
a focus on techniques that use training queries to estimate the prob-
ability that various documents are relevant to a given query and use
that information to assign scores to those documents on which they are
subsequently ranked. This paper introduces SlideFuse, which builds on
these techniques, introducing a sliding window in order to compensate
for situations where little relevance information is available to aid in the
estimation of probabilities.
SlideFuse is shown to perform favourably in comparison with CombMNZ,
ProbFuse and SegFuse. CombMNZ is the standard baseline technique
against which data fusion algorithms are compared whereas ProbFuse
and SegFuse represent the state-of-the-art for probabilistic data fusion
methods.

1 Introduction

The aim of any Information Retrieval (IR) system is the identification of docu-
ments that best satisfy a user’s information need, typically expressed in terms
of a textual query. Traditional approaches to IR employ algorithms responsible
for analysing the contents of the documents themselves in order to return those
that most closely relate to the query provided.

More recently, there is a growing body of research focused on combining the
output of several such systems with the aim of creating a single set of results
that will have greater relevance than the output of any individual system [1–3].
Algorithms to perform this type of combination vary according to the situations
in which they are intended to be used. This paper concentrates on the “data
fusion” family of algorithms, which are intended for use in cases where each
input system has access to the same document collections [4]. This is distinct
from “collection fusion” [5], where the document collections are disjoint, or cases
where only partial overlap exists between collections.

The principal difference between these situations is that data fusion algo-
rithms may consider the presence of a document in multiple result sets as evi-
dence of relevance, since a document’s absence in a result set can only be as a



result of it not being considered relevant by the corresponding input system. In
contrast, where the overlap between document collections is not complete, the
absence of a document from a result set may merely reflect its absence from the
underlying document collection and so is not necessarily a reliable indication
that the document has been considered to be nonrelevant.

This paper introduces SlideFuse, a novel probabilistic data fusion algorithm
that uses the past performance of its underlying input systems as an indication
of the probability that certain documents will be relevant to future queries. This
assumption has been previously demonstrated to achieve favourable results [6,
7]. It is robust in the face of incomplete training data by utilising information
about a document’s neighbours as evidence of its likelihood of relevance. It does
this while avoiding some of the shortfalls of existing probabilistic methods.

Section 2 gives a brief outline of previous research in the area of data fusion.
In Section 3, we present an overview of how SlideFuse operates, followed by
a formal definition of the algorithm in Section 4. Section 5 details the setup of
the experiments that were run to evaluate the SlideFuse algorithm, the results of
which are presented in Section 6. This includes a comparison with the CombMNZ
algorithm, which is a standard baseline frequently used in data fusion research,
as well as ProbFuse and SegFuse, two recent probabilistic data fusion techniques.
Finally, conclusions and future work are discussed in Section 7.

2 Data Fusion

Traditionally, data fusion techniques fall into two broad categories: score-based
fusion and rank-based fusion. Score-based techniques make use of the scores
each input system uses to rank the documents in its result set. This typically
necessitates the use of some form of score normalisation [8], in order to ensure
that the results cannot be skewed by the use of different methods of allocating
scores (e.g. one input system may score documents on a scale of 0-100 whereas
another may use a scale of 0-1).

A popular approach to score-based fusion is the use of a Linear Combination
[1, 9, 3]. Here, weights are attached to each input system, which are multipled by
the ranking scores assigned each document. The final score for each document
is the sum of these. Normalised scores have also been used in this context [10].

An important suite of data fusion techniques based on normalised scores
was proposed in [8]. Of these, CombMNZ has become the standard data fusion
technique against which new algorithms are compared [2, 11]. Here, the final
score assigned to each document is the sum of the normalised scores it is given in
each input result set, multiplied by the number of input systems that returned it.
Significant work was carried out by Lee to demonstrate CombMNZ’s effectiveness
[12].

Interleaving is perhaps the simplest rank-based fusion technique [5]. This
involves removing the top document from each input result set in turn and
adding it to the fused set to be returned. Weighted variations on this have
also been proposed so as to benefit input systems that have achieved superior



performance in the past [13]. Two voting-based techniques based on document
ranks were proposed by Aslam and Montague [11, 14]. These used the analogy
of the input systems representing few electors and the documents representing
many candidates to be ranked.

An algorithm making use of the textual contents of the documents was pre-
sented in [15, 16]. Another relies on the input systems providing metadata re-
lating to the documents they return, which can be used in the fusion process
[17].

In recent times, a variation of rank-based fusion has emerged, whereby result
sets are divided into segments and documents are assigned a score based on the
segments in which they appear, rather than their exact rank within the result
set. The ProbFuse algorithm [6, 18] divides each result set into equal length
segments and uses training data to estimate the probability that a document
returned in a particular segment by a particular input system is relevant. This
is done by calculating the proportion of documents returned in each segment
by each input system that are relevant to the training queries, compared to
nonrelevant documents.

A similar approach is taken with SegFuse [7], with the major exception being
that the segments are not of equal length, but rather increase in size exponen-
tially later in the result set. As relevant documents are most likely to occur in
the early part of a result set, maintaining small segment sizes in early positions
advantages these early documents, as they are less likely to be grouped with less
relevant documents occurring later on. SegFuse also takes normalised scores into
account.

3 SlideFuse: Introduction

Existing segment-based data fusion techniques ProbFuse and SegFuse use the
probability that a document is relevant to assign a score on which it is even-
tually ranked in the final result set. This probability is estimated by analysing
the results of a number of training queries for which relevance judgments are
available. Relevance judgments are typically included with IR test collections,
and specify which documents in the collection have been judged to be relevant,
or nonrelevant, to test queries. However, with large document collections these
judgments tend to be incomplete, meaning that only relatively few documents
have been judged for each query, leaving the majority unjudged. This incom-
pleteness causes difficulty in analysing training data, as there may be positions
in result sets in which a document that is known to be relevant is never returned,
though this does not necessarily entail that a relevant document is never located
at that rank.

For this reason, calculating probabilities at the individual rank level results in
an extremely jagged probability distribution. For instance, with the Web Track
from the TREC-2004 conference (which is the document collection used in the
experiments presented in Section 5), calculating the probability for each position
results in the graph presented in Figure 1. In that figure, the probability value



used in each position is the number of relevant documents returned in that
postion over all the training queries, divided by the total number of training
queries that returned a document in that position (i.e. a result set of only 100
documents in length will not have returned a document in position 101).

One motivation behind segmenting result sets is to counter this effect, by not
estimating the probability of relevance of a document returned at a particular
rank solely based on documents returned at that exact rank for the training
queries. Instead, relevant documents returned at other positions within the same
segment are also taken into account, so smoothing the distribution of probability
scores.

One consequence of this approach is that it is possible for a significant drop
in probability score to occur at the boundary between segments. This effect is
illustrated in Figure 2. For example, in a result set divided into segments of
40 documents each, the probability associated with the document returned in
position 40 is likely to be much higher than that of the document returned in
position 41. This is because the probability for the segment containing position
40 is calculated using positions 1 through 40, whereas the segment containing
position 41 ranges from position 41 to position 80. As the former encompasses
documents much higher in the result set (that are more likely to be relevant
than documents further down the result set), position 40 is given an artificial
advantage over position 41. This is easily demonstrated by plotting a graph of
probability score against position. Unlike ProbFuse, SegFuse changes the size
of each segment in different areas of the result set, with the smallest segments
being at the beginning. This has the effect of reducing the distance between such
segment boundaries at the beginning of the result set, where relevant documents
are most likely to appear and consequently reducing the occurrence of sudden
changes in probability scores.

Fig. 1. Probability Distribution using Individual Positions



In order to address the problem of the sudden drops in the probability scores
associated with segmentation, and the problem of incomplete relevance judg-
ments, we introduce the concept of a window surrounding each rank, where the
probability assigned to that rank is based on the proportion of relevant docu-
ments located in its surrounding window during the training phase. For example,
if we define the size of the sliding window to extend to 5 documents on either
side of the relevant position, the window for rank 40 will extend from position
35 to position 45 inclusive. Similarly, the sliding window for position 41 extends
from rank 36 to rank 46. With this approach, the problem of the location of
segment boundaries is eliminated, as it is the closest neighbouring positions that

Fig. 2. Probability Distribution using ProbFuse and SegFuse

Fig. 3. Probability Distribution using SlideFuse



are always taken into account. The effect on probability distribution is shown
in Figure 3. As a special case, SlideFuse ensures that a sliding window cannot
extend beyond the boundaries of the result set.

The use of training data entails that the scores that are ultimately assigned
to each document are based on the past performance of each input system, thus
encompassing an implied weighting system wereby documents returned by input
systems with a prior record of greater effectiveness will receive a higher score. A
formal mathematical description is presented in Section 4.

4 SlideFuse: Description

In common with other probabilistic data fusion techniques, SlideFuse requires
both a training phase and a fusion phase. In the training phase, relevance infor-
mation is gleaned from result sets returned in response to training queries for
which relevance judgments are available. Later, this training data is used to fuse
result sets produced by the same input systems relating to other queries.

4.1 Training Phase: Rank Probability

The training phase consists of estimating for each input system the probability
that a document returned in any given rank in that system’s result set is relevant.

Formally, P (dp|s), the probability that a document d returned in position p
of a result set is relevant, given that is has been returned by input system s is
given by

P (dp|s) =

∑
q∈Qp

Rdp,q

Qp
(1)

where Qp is the set of all training queries for which at least p documents
were returned by the input system and Rdp,q is the relevance of the document
dp to query q (1 if the document is relevant, 0 if not). This is calculated for each
input system to be used in the fusion phase.

4.2 Fusion Phase: Window Boundaries

As noted in Section 3, using the probability at each rank leads to inconsistent
results on document collections with incomplete relevance judgments, due to the
high number of documents in each result set that have not been judged relevant
(and are therefore assumed not to be relevant). In order to achieve more useful
probability values, we construct a window around each position, so as to make
use of relevance information about near neighbours when assigning probabilities
to individual ranks.

The start and end points (a and b respectively) of the sliding window sur-
rounding each result set position p are given by



a =

{
p− w p− w >= 0

0 p− w < 0
(2)

b =

{
p + w p + w < N

N − 1 p + w >= N
(3)

where w is a parameter that indicates how many positions on either side of
p should be included in the window and N is the total number of documents in
the result set. In effect, the above definitions of a and b ensure that the window
cannot begin before the first document in the result set and also cannot extend
beyond the last document.

4.3 Fusion Phase: Assigning Probabilities to Windows

Once the window boundaries have been set around each position of each of the
result sets that are to be fused, the next stage in the fusion process is to assign
a probability score to each position based on those positions contained in the
window surrounding it.

P (dp,w|s), the probability of relevance of document d in position p using a
window size of w documents either side of p, given that it has been returned by
input system s is given by

P (dp,w|s) =
∑b

i=a P (di|s)
b− a + 1

(4)

The use of the sliding window results in a smoother decrease in the proba-
bilities later in the result set, when compared with using probabilities based on
data available at each position alone.

4.4 Fusion Phase: Ranking Score

Once the above stages have been completed, the final step is to assign a score
to each document. Rd, the final ranking score given to document d is given by

Rd =
∑
s∈S

P (dp,w|s) (5)

where S is the set of all input systems used and p is the position in which
document d was returned by input system s. Using the sum of the probability
scores makes use of the “Chorus Effect”, which argues that multiple input sys-
tems agreeing on the relevance of a document is evidence that the document in
question is actually relevant [3]. The “Skimming Effect” is also important in the
context of data fusion [3]. This states that since relevant documents are most
likely to be located in early positions in a result set, weighting highly-ranked
documents heavily is beneficial when performing fusion. Although there is no
explicit consideration of this effect made in the definition of SlideFuse, the prob-
ability distribution in Figure 3 shows that this increased likelihood of relevance
in early positions automatically benefits these highly-ranked documents.



5 Experiment Setup

The document collection used for evaluation is the Web Track from the TREC-
2004 conference [19]. A feature of this document collection is that the relevance
judgments are extremely incomplete. The available data includes 74 topfiles
(each containing result sets produced by a single input system in response to
each of 225 queries). A number of measures were taken in order to reduce the
possibility of any bias being introduced by either the selection of input systems
or the ordering of the queries.

Five runs of the experiment were performed. For each run, six topfiles were
selected and the result sets from those topfiles were fused using SlideFuse, Prob-
Fuse, SegFuse and CombMNZ. No topfile was used in more than one experi-
mental run, the result of which being that of the 64 topfiles available, 30 were
used for the purposes of this experiment. So as to eliminate the possibility of the
ordering of the queries introducing any sort of bias, each run was performed five
times, with the queries being shuffled each time. After shuffling, the first 10% of
queries were used for the purposes of training SlideFuse, ProbFuse and SegFuse.
As the CombMNZ algorithm does not require a training phase, these training
queries were ignored for that technique. The evaluation results presented below
for each run are the average evaluation results from all of the various query
orderings.

When running ProbFuse, each result set was divided into 25 segments, as in
[6]. For the purposes of SlideFuse, the value of the w parameter was set to 5 (i.e. 5
documents on both sides of each position were included in the window). It is de-
sirable to use a small value for w, in order that the probabilities at each position
are only influenced by positions that are close by. However, initial experiments
showed that using windows that are too small failed to fully address the problem
outlined in Section 3, as there were still positions for which probabilities could
not be calculated due to a lack of available relevance judgments.

When performing the evaluation of the four data fusion techniques, three
evaluation measures were used: Mean Average Precision (MAP) is the mean of
the precision scores obtained after each relevant document has been retrieved.
Relevant documents that are not included in the result set are given a precision of
zero. MAP assumes that documents that have not been judged are nonrelevant.
The bpref measure evaluates the relative position of relevant and nonrelevant
documents, ignoring documents that are unjudged. It was proposed by Buckley
and Voorhees to cater for situations where relevance judgments are incomplete
[20]. P10 measures the precision after 10 documents have been returned. Re-
search has demonstrated that the vast majority of users of IR systems only
examine the top 10 documents presented to them [21]. Thus, the P10 measure
places emphasis on documents returned in those positions where they are likely
to be of use to the user.

Table 1 illustrates the results of initial experiments aimed at choosing an
appropriate training set size. Fusion was performed using each algorithm, with
the training set sizes set to 10%, 20%, 30%, 40% and 50% of available queries
in turn. The performance of each algorithm was evaluated for each training set



size using MAP. The Coefficient of Variation relating to these scores was then
calculated for each algorithm for each run. This reflects the degree to which fusion
performance is affected by changing the training set size. As Table 1 illustrates,
altering the number of training queries did not have any substantial effect on the
performance of any of the fusion algorithms. Similar results were obtained for
the bpref and P10 evaluation measures. Using only 10% of the available queries
for training thus reduces the amount of training data without adversely affecting
performance.

Table 1. Coefficient of Variation for MAP scores using training set sizes of 10%, 20%,
30%, 40%, 50%

CombMNZ ProbFuse SegFuse SlideFuse

first 0.0033 0.0131 0.0056 0.0056
second 0.0056 0.1188 0.0581 0.0104
third 0.0380 0.0168 0.0120 0.0103
fourth 0.0034 0.0143 0.0111 0.0019
fifth 0.0246 0.0229 0.0491 0.0179

6 Analysis of Results

The results of comparing SlideFuse with CombMNZ, ProbFuse and SegFuse are
shown in Tables 2, 3 and 4. Each table presents the results from each of the five
runs, along with the average result for each fusion technique. The “vs. Best”
column displays the percentage difference between SlideFuse and the best of the
other techniques (which is highlighted in bold in each case). The average in that
column is the percentage difference between the average SlideFuse score and the
best average score amongst the other algorithms. Values marked with “*” are
statistically significant for a significance level of 5%, using a paired t-test. Entries
marked with “**” are significant for a significance level of 1%.

Table 2. TREC-2004 performance of five individual runs evaluated with MAP

CombMNZ ProbFuse SegFuse SlideFuse vs. Best

first 0.1598 0.4045 0.1789 0.4977 23.05% **
second 0.0783 0.2809 0.1493 0.4905 74.58% **
third 0.0426 0.2454 0.4946 0.5103 3.17% **
fourth 0.2454 0.2505 0.4995 0.5025 0.61%
fifth 0.1334 0.2892 0.3348 0.3849 14.98% **

average 0.1319 0.2941 0.3314 0.4772 43.99%



Table 3. TREC-2004 performance of five individual runs evaluated with bpref

CombMNZ ProbFuse SegFuse SlideFuse vs. Best

first 0.2176 0.2997 0.2547 0.4009 33.75% **
second 0.3155 0.1877 0.3529 0.4085 15.75% **
third 0.1665 0.1281 0.4228 0.4331 2.44% *
fourth 0.4015 0.1375 0.4155 0.4131 -0.58%
fifth 0.1945 0.1968 0.2971 0.2996 0.83%

average 0.2591 0.1900 0.3486 0.3910 12.17%

Table 4. TREC-2004 performance of five individual runs evaluated with P10

CombMNZ ProbFuse SegFuse SlideFuse vs. Best

first 0.1123 0.1344 0.1195 0.1413 5.15% **
second 0.0349 0.1023 0.0800 0.1436 40.39% **
third 0.0257 0.1164 0.1401 0.1445 3.15% **
fourth 0.1101 0.1124 0.1381 0.1408 1.96% *
fifth 0.0561 0.1070 0.1113 0.1189 6.83% **

average 0.0678 0.1145 0.1178 0.1378 16.99%

Of the baseline techniques, ProbFuse performs best on the “first” and “sec-
ond” runs, with SegFuse achieving superior performance on the others, with one
exception in the bpref data. Overall, SlideFuse achieves the highest evaluation
scores on average for all evaluation measures, with the single exception of the
bpref score for the “fourth” run where the difference is 0.58%, although this
difference is not significant. Tests show that the performance improvements are
statistically significant in most cases, with the exceptions being the “fourth” run
when evaluated using MAP and the “fifth” run when evaluated with bpref.

Additionally, SlideFuse outperforms the best other technique in all runs using
all three evaluation measures. When compared on an overall basis against any
individual technique, the improvement is over 12% in all cases, and is above 40%
when measured using MAP.

7 Conclusions and Future Work

This paper describes SlideFuse, a probabilistic data fusion algorithm that ad-
dresses some of the limitations of existing segment-based probabilistic tech-
niques. On experiments using the TREC-2004 Web Track dataset, SlideFuse
was shown to outperform the CombMNZ, ProbFuse and SegFuse data fusion
techniques when evaluated using MAP, bpref and P10. Despite the fact that the
training data available for the dataset is incomplete, SlideFuse was still capable
of outperforming two algorithms that use the same training data (ProbFuse and
SegFuse) and one that does not rely on training data (CombMNZ).

This was achieved by using a sliding window to use the probable relevance
of a document’s neighbours to estimate the probability that a document itself is
relevant.



At present, SlideFuse assumes that each result set returned by an input
system is of the same quality, as the probabilities used for fusion will be same in
each case. In the future, we aim to investigate methods of weighting a particular
result set according to its quality. This could possibly involve the use of the
scores assigned to each document as a measure of an input system’s confidence
in its own results. Another approach to weighting would be to introduce weights
within the sliding windows themselves, so as to place more emphasis on those
documents that are closest to the rank around which the window is centred.
Finally, a minor drawback of SlideFuse is that documents returned in positions
beyond the length of the training sets will not be taken into account when fusing.
We aim to address this situation in a more satisfactory fashion.
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