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ABSTRACT
Data Fusion is the combination of a number of indepen-
dent search results, relating to the same document collec-
tion, into a single result to be presented to the user. A
number of probabilistic data fusion models have been shown
to be effective in empirical studies. These typically attempt
to estimate the probability that particular documents will
be relevant, based on training data. However, little attempt
has been made to gauge how the accuracy of these estima-
tions affect fusion performance. The focus of this paper is
twofold: firstly, that accurate estimation of the probability
of relevance results in effective data fusion; and secondly,
that an effective approximation of this probability can be
made based on less training data that has previously been
employed. This is based on the observation that the dis-
tribution of relevant documents follows a similar pattern in
most high-quality result sets. Curve fitting suggests that
this can be modelled by a simple function that is less com-
plex than other models that have been proposed. The use
of existing IR evaluation metrics is proposed as a substitu-
tion for probability calculations. Mean Average Precision is
used to demonstrate the effectiveness of this approach, with
evaluation results demonstrating competitive performance
when compared with related algorithms with more onerous
requirements for training data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
In the context of Information Retrieval (IR), many re-

searchers have attempted to use data fusion to improve the
quality of their results. This involves submitting a query to
a number of distinct IR systems (known as “input systems”,
as they provide the inputs to the fusion process) that have
access to the same document collection, and subsequently
merging their outputs into a single result set to be presented
to the user. This is related to, but distinct from, the con-
cept of meta-search (or collection fusion), where the results
being merged are from IR systems operating with disjoint
(or partially overlapping) document collections [18].

Many techniques to tackle the data fusion task are avail-
able that use only the result sets that are actually being
fused. These approaches vary from purely rank-based algo-
rithms such as interleaving [18] to score-based techniques
such as linear combinations [3, 14, 17] and the popular
CombSum and CombMNZ algorithms [5, 6, 15]. Algorithms
based on voting have also been popular [1, 13].

More recently, attempts have been made to take into ac-
count the past performance of input systems when perform-
ing fusion [1, 8, 10, 16]. These techniques make use of prob-
abilities to calculate a score on which the final, fused result
set will be ranked. Many, however, require detailed train-
ing data to be available, from which the probabilities are
calculated. Typically, a number of training queries are run,
with each of the input systems required to provide results
for each. These results are then compared with relevance
judgements so as to identify the positions in each result set
where relevant documents have been returned. From this
data, a model can be built up that predicts the probability
of particular documents being relevant, based on the system
that returned them and the positions in the respective result
sets they occupy.

This position-level granularity of training data is an oner-
ous requirement to have on a fusion process. Probabilistic
data fusion with a minimal requirement for training would
be preferable. The aim of this paper is to attempt to perform
fusion based on probability of relevance, but without such



a reliance on detailed training data. In order to do this, we
must firstly demonstrate that an accurate probability model
is indeed beneficial to fusion performance. Following this we
attempt to show that this probability of relevance can be ap-
proximated by a function of a documents position within a
result set. We also outline one candidate function to achieve
effective fusion.

This paper is organised as follows: Firstly, Section 2 out-
lines a number of considerations that must be taken into
account when developing a data fusion solution. Section 3
motivates the work by considering some pre-existing prob-
abilistic fusion models and examines how an accurately-
constructed probability model can result in effective data
fusion. Following from this, Section 4 shows how such a
probability model can be estimated by reference to a single-
value measure of the quality of the inputs to the fusion pro-
cess. Having chosen the Mean Average Precision evaluation
metric as this single-value measure, a set of experiments is
outlined in Section 5 that demonstrates the effectiveness of
our approach when compared with others. Finally, we out-
line our conclusions and present some ideas for future work
in Section 6.

2. CHARACTERISTICS OF DATA FUSION
When performing effective data fusion, there are a number

of “effects” that may be taken into account. These were
initially outlined by Vogt and Cottrell in [17].

• The Skimming Effect is based on the observation that
relevant documents are more likely to appear at the top
of result sets (where an IR system would place those
documents it estimates to be most relevant). Thus
favouring early-ranked documents when compiling the
final result set can result in improved fusion perfor-
mance.

• The Chorus Effect argues that if multiple input sys-
tems agree on the relevance of a document (by includ-
ing it in each of their result sets) then this is increased
evidence of relevance. This is also consistent with Lee’s
observation that IR systems tend to return the same
relevant documents but different nonrelevant ones [7].
Fusion algorithms that attach greater importance to
documents that are returned by multiple input sys-
tems attempt to exploit this effect.

• The Dark Horse Effect refers to a situation where an
input system returns an unusually high- or low-quality
result set. In this situation, if a fusion technique was
able to identify a “dark horse”, it may opt to return
only the result set of that input system, rather than
performing any fusion. This effect is very difficult to
detect and we are not aware of any techniques that
attempt to make use of it.

3. PROBABILITY AS A STRATEGY FOR
DATA FUSION

A number of data fusion algorithms have been proposed
that use the probability of relevance as a method of assign-
ing scores to documents. Aslam and Montague make use of
a Bayesian model that uses both the probability of relevance
and the probability of non-relevance to rank documents [1].
The probabilities are calculated by examining the precision

at a number of document levels. Result sets are divided
into ranges between these document levels, with appropriate
probability values being associated with each range. Man-
matha et al. infer probabilities from the ranking scores given
to documents by the various input systems [11].

Another group of probability-based fusion algorithms use
training data to calculate a set of probabilities for each of
the systems providing result sets to be fused. In this con-
text, training data consists of result sets produced by the
same input systems in response to queries for which rel-
evance judgements are available. Having analysed where
relevant documents tend to be returned by each inputs sys-
tem, a probability model is built. For each of the input
systems, this model maps a probability score on to each po-
sition in which a document may potentially be returned. For
instance, System A may have a probability of 0.4 associated
with position 1. This would imply that for any given docu-
ment returned by System A at the top of its result set, there
is an estimated probability of 0.4 that the document is rel-
evant. Algorithms utilising this type of probability model
include Lillis et al.’s ProbFuse [8] and SlideFuse [10] and the
SegFuse algorithm developed by Shokouhi [16].

This approach to data fusion relies on two fundamental
assumptions. Firstly, it is assumed that a system’s perfor-
mance in response to training queries is indicative of how
it will perform when faced with different queries. It is also
assumed that the construction of an accurate probability
model will result in effective fusion. Although the empirical
experiments presented in [9, 10, 16] demonstrate effective
retrieval performance when compared against the baseline
CombMNZ, the accuracy of the probability model is not
tested.

The aim of this paper is to examine this second assump-
tion in more detail. Establishing that an accurate model of
the probabilities required results in effective fusion further
motivates the examination of further methods of construct-
ing such models.

In order to test this, we evaluated the effectiveness of using
a perfect probability model for fusion. This perfect proba-
bility model was constructed by using the same queries (and
consequently the same result sets) for training as for fusion.
The consequence of this is that the probability model per-
fectly reflects the positions of the relevant documents in the
result sets being used for fusion. Clearly, such an approach
is not feasible from a practical point of view, as the rele-
vant documents are not known at query time. However, the
aim of this experiment is to demonstrate how effective fusion
would be if an accurate approximation of the real probability
distribution could be constructed.

The inputs for this experiment were taken from the TREC
2004 Web Track [4]. Five fusion runs were performed, using
six input systems each time. The systems were chosen by
their overall MAP score, with the six best systems being
part of run1, the seventh to twelfth best systems in run2
etc. These inputs consisted of result sets relating to 225
distinct topics (queries).

The specific inputs used for each run are the same for all
experiments presented in this paper, and are as follows:

• run1: MSRC04B2S, MSRC04C12, MSRC04B1S,
MSRAx4, MSRAx2,MSRAmixed1

• run2: MSRAmixed3, MSRC04B1S2, MSRAx5,
UAmsT04MSind, UAmsT04MWScb, UAmsT04MSinu



• run3: UAmsT04MWinu, uogWebSelAn,
uogWebSelAnL, MSRC04B3S, THUIRmix045,
THUIRmix041

• run4: uogWebCA, ICT04MNZ3, THUIRmix043,
ICT04CIIS1AT, ICT04RULE, THUIRmix042

• run5: ICT04basic, ICT04CIILC, MeijiHILw1,
uogWebSelL, UAmsT04LnuNG, MeijiHILw3

By way of comparison, the result sets were fused using
the SlideFuse and CombMNZ fusion algorithms, which are
described in detail in [10] and [5] respectively. SlideFuse is a
probabilistic data fusion algorithm that estimates the proba-
bility of relevance at each position using training queries. It
is chosen as a representative from the family of probabilistic
algorithms to which it belongs (also including ProbFuse [9]
and SegFuse [16]). In order to compensate for incomplete
relevance judgements, where judgements of relevance or non-
relevance are not available for every document in the collec-
tion, SlideFuse smooths these probabilities using a sliding
window approach. This means that the probabilities asso-
ciated with each position also depends on the occurrence of
relevant documents in neighbouring positions. In contrast,
CombMNZ is a much simpler algorithm and has been chosen
because it is frequently used as a baseline in fusion experi-
ments. This does not use any training data, but rather uses
the scores given to each document by the input systems to
rank the fused result set. The details of how these were
implemented are given in the following subsections.

3.1 PosFuse
The approach based on the perfect probability model is

described here as “PosFuse” (as it is based on the proba-
bility at the position in which a document appears). Like
SlideFuse, it is calculated in two stages: a training phase
and a fusion phase.

In the training phase, P (dp|s) is calculated. This is the
probability that a document d returned in position p of a
result set is relevant, given that is has been returned by
input system s. It is calculated by

P (dp|s) =

∑
q∈Qp

Rdp,q

Qp
(1)

where Qp is the set of all training queries for which at
least p documents were returned by the input system and
Rdp,q is the relevance of the document dp to query q (1 if
the document is relevant, 0 if not). This is calculated for
each input system to be used in the fusion phase.

Following this, the fusion stage requires that a ranking
score be assigned to each document (Rd). This is given by

Rd =
∑
s∈S

P (dp|s) (2)

where S is the set of all input systems used and p is the
position in which document d was returned by input system
s. Although the use of probabilities would suggest that mul-
tiplication would be an obvious operator to use, the nature
of data fusion makes addition more useful in this scenario.
Adding the probability scores together results in a docu-
ment’s ranking score receiving a boost for every result set
in which it appears (thus leveraging the Chorus Effect). Rd

is intended as a score on which to rank documents, rather
than an accurate estimation of the probability of a docu-
ment’s relevance.

3.2 SlideFuse
SlideFuse is a probabilistic fusion algorithm that is also

based on the probability of relevance in various positions in
result sets [10]. For SlideFuse, this probability calculation is
the same as described above in Equation 1.

However, SlideFuse does not use this probability alone in
order to calculate scores. It also employs a smoothing of
these probabilities based on the notion of a sliding window.
The argument in favour of this smoothing is that in certain
situations, some positions may be ultimately given a proba-
bility of zero. This occurs whenever no relevant documents
are returned by an input system at that exact position dur-
ing the training phase. There are two principal reasons why
this may happen:

1. Few Training Queries: If the number of queries be-
ing used for training is very small, this reduces the
overall number of relevant documents being returned
by each input system. Because of this, it consequently
increases the chance that a particular position may not
contain a relevant document for any of the training
queries.

2. Incomplete Relevance Judgements: When rele-
vance judgements are “incomplete”, not all documents
have been judged for relevance to all the queries. This
means that there three types of document: relevant,
nonrelevant and unjudged. The lack of judged rele-
vant documents appearing at any position may merely
be as a result of documents being unjudged.

Whatever the reason, a probability of zero is undesirable.
Firstly, it runs contrary to the Chorus Effect to neglect to
take into account that a document was actually returned by
an input system, regardless of its position. Secondly, it is
counter-intuitive to give any document that was returned in
a result set the same treatment as one that was not returned
at all.

The sliding window is designed to reduce the likelihood of
zero probabilities by also taking into account neighbouring
positions. The start and end points (a and b respectively)
of the sliding window surrounding each result set position p
are given by

a =

{
p− w p− w >= 0

0 p− w < 0
(3)

b =

{
p + w p + w < N

N − 1 p + w >= N
(4)

where w is a parameter that indicates how many positions
on either side of p should be included in the window and N
is the total number of documents in the result set. In effect,
the above definitions of a and b ensure that the window
cannot begin before the first document in the result set and
also cannot extend beyond the last document.

Once the boundaries of the window have been set, a proba-
bility must be associated with each. P (dp,w|s), the probabil-
ity of relevance of document d in position p using a window



size of w documents either side of p, given that it has been
returned by input system s is given by

P (dp,w|s) =

∑b
i=a P (di|s)
b− a + 1

(5)

Finally, a ranking score is given to each document using
a formula very similar to Equation 2, except that the prob-
ability associated with the window is used instead of the
probability at a particular rank.

Rd =
∑
s∈S

P (dp,w|s) (6)

3.3 CombMNZ
Although it is not a probabilistic model, we also include

the CombMNZ fusion algorithm, as it has become a stan-
dard baseline against which other fusion algorithms are com-
pared [2, 13, 19]. Originally proposed by Fox and Shaw
in [5], CombMNZ is a score-based algorithm that does not
rely on training. It has gained popularity as a baseline mea-
sure principally because it is easily implemented and its re-
trieval performance tends to be very strong, despite its sim-
plicity. Our implementation of CombMNZ follows that of
Lee [7], who carried out a number or experiments using a
variety of techniques proposed by Fox and Shaw.

CombMNZ is run in two phases. Unlike PosFuse and
SlideFuse, both of these are done at fusion time, with no
training required. Because CombMNZ is based on the scores
attributed to each document by each of the input systems,
the first requirement is that these be normalised. This is
intended to scale all of the scores into the same range, so as
to avoid a situation where one input system attaches greater
weight to documents merely because it calculates scores from
0 to 100 rather than from 0 to 1.

The normalisation formula used by Lee is known as “stan-
dard normalisation” [12] and is given by

normalised sim =
unnormalised sim−min sim

max sim−min sim
(7)

where max sim and min sim are the maximum and min-
imum scores that are actually seen in the input result set.
Once the scores have been normalised, CombMNZd, the
CombMNZ ranking score for any document d is given by

CombMNZd =

S∑
s=1

Ns,d × |Nd > 0| (8)

where S is the number of result sets to be fused, Ns,d

is the normalised score of document d in result set s and
|Nd > 0| is the number of non-zero normalised scores given
to d by any result set.

3.4 Initial Results
Table 1 shows the MAP score for a number of data fusion

algorithms. For comparison purposes, the column labelled
“MaxMAP” shows the highest overall MAP score achieved
by any individual input. It can be argued that this is the
baseline that all fusion algorithms should aim to beat. If a
fusion algorithm cannot achieve this level of performance,
then a superior approach would simply be to identify which
of the input systems performs best, discarding the others.

In this table, the highest MAP score amongst the fusion
algorithms is shown in bold.
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run1 0.5389 0.5751 0.5697 0.3317
run2 0.5120 0.5679 0.5651 0.5249
run3 0.4589 0.5375 0.5223 0.1862
run4 0.4325 0.4791 0.4628 0.1740
run5 0.3976 0.4907 0.4640 0.4203

Table 1: MAP Scores when training on the actual
result sets being fused. The highest MAP score for
a fusion technique on each run is in bold.

From Table 1 it can be seen that the highest MAP scores
are achieved on all runs by PosFuse. Additionally, these
MAP scores are greater than the best performing individual
input for each run. This is an interesting result in that it
adds motivation to the pursuit of a probability distribution
for the purposes of fusion.

Another interesting observation is that the PosFuse tech-
nique was able to achieve marginally greater MAP scores
than SlideFuse. SlideFuse is based on probabilities that are
initially calculated in the same way as for PosFuse, with the
addition of the smoothing that is performed by the sliding
window. It is, however, important to note that the prin-
cipal motivation behind the use of sliding windows is to
cater for situations where a small quantity of training queries
combined with incomplete relevance judgements may cause
some positions to be attributed a probability of zero. As
the results shown in Table 1 are for fusion runs consisting of
225 training queries, this kind of situation does not arise to
the same extent and so the motivation for this is lost. The
performance of SlideFuse is still greater than the maximum
individual MAP score, however.

4. MODELLING PROBABILITY
Having demonstrated the effectiveness of using accurate

probability figures, we now investigate how this may be mod-
elled, preferably without the necessity for large quantities of
training data.

4.1 Curve Fitting
To do this, the probability distributions calculated for the

225-query run outlined in Section 3 were analysed. For each
distribution (each one related to one input system), a curve
was fitted using the gnuplot graphing utility 1. In each case,
the probability of relevance was plotted on the y-axis, with
the result set position (starting at 1 for the top position in
the result set) on the x-axis. In each case, gnuplot fit a curve
of the form y = a

x
, meaning that the probability of relevance

would become a function of the result set position.
Figure 1 illustrates the process of fitting a curve for the

MSRC04B32S input system. The first graph in that figure
shows the results of fitting a curve only to the first 100 posi-
tions in each result set, whereas the second uses the entirety
of each result set (TREC results are truncated to at most

1http://gnuplot.info



1000 documents in each result set). The fitted a-value is
shown at the top-right of each graph. Despite the large dif-
ference in the lengths of the result sets being used, there is
less than a 1% difference between the a-values generated.

Figure 1: Curves fit to probability distribution for
the MSRC04B2S input, showing 100 positions and
1000 positions respectively

Using the latter a-value (relating to 1000-document result
sets), this leads to a modification of Equation 1 for calculat-
ing the probability of relevance. For the specific result sets
used, the probability that a document d returned in position
p in a result set created by the MSRC04B25 input system is
represented by P (dp|MSRC04B25). Its value is given by

P (dp|MSRC04B25) =
0.79929

p
(9)

This is shown for illustrative purposes: similar fitting was
done for all of the other input systems available, with a va-
riety of a-values being generated. Although interesting that
such a function can be generated for a range of input sys-
tems, to do so requires even more training effort than what
was needed for the PosFuse algorithm used in Section 3. In
addition to the training data necessary to calculate the prob-
ability of relevance at each position, the curve fitting would
also have to be performed.

The shape of the fitted curves is interesting in that it sup-
ports the reasoning behind the description of the Skimming
Effect. The graph shown in Figure 1 shows that documents
ranked in early positions in result sets are much more likely
to be relevant than those further down the result set. It also
supports the idea that probability scores (or approximations
thereof) can be effectively used in the calculation of fusion
scores.

4.2 Evalation of curve fitted approach
To gauge how effective this is in terms of fusion perfor-

mance, a comparison is made with the results obtained for
the experiment outlined in Section 3. Table 3 reproduces
the figures shown in Table 1, with the addition of an ex-
tra column (marked “FitFuse”), which is based on the fitted
curves.

For FitFuse, rather than using the probabilities of rele-
vance calculated on a per-position basis, we use the formula
described in Equation 9. The fitted a-values used for each
input system is given in Table 2.

Input a-value

run1
MSRAmixed1 0.806350
MSRAx4 0.803393
MSRC04B2S 0.799290
MSRAx2 0.798310
MSRC04B1S 0.786756
MSRC04C12 0.802797
run2
MSRAmixed3 0.774764
MSRC04B1S2 0.701004
UAmsT04MSinu 0.469070
MSRAx5 0.787904
UAmsT04MSind 0.454965
UAmsTo4MWScb 0.466055
run3
MSRC04B3S 0.649945
THUIRmix041 0.641529
THUIRmix045 0.661245
UAmsT04MWinu 0.458516
uogWebSelAn 0.469182
uogWebSelAnL 0.451617
run4
ICT04CIIS1AT 0.685360
ICT04MNZ3 0.690526
ICT04RULE 0.653053
THUIRmix042 0.649099
THUIRmix043 0.638313
uogWebCA 0.401074
run5
ICT04basic 0.643282
ICT04CIILC 0.660100
MeijiHILw1 0.374485
MeijiHILw3 0.371387
UAmsT04LnuNG 0.670690
uogWebSelL 0.424656

Table 2: a-values used for FitFuse the various input
systems.

The results shown in Table 3 are promising. Having moved
away from the perfectly accurate probability distribution
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run1 0.5389 0.5773 0.5751 0.5697 0.3317
run2 0.5120 0.5640 0.5679 0.5651 0.5249
run3 0.4589 0.5140 0.5375 0.5223 0.1862
run4 0.4325 0.4704 0.4791 0.4628 0.1740
run5 0.3976 0.4724 0.4907 0.4640 0.4203

Table 3: MAP Scores when training on the actual
result sets being fused. The highest MAP score for
a fusion technique on each run is in bold.

used in PosFuse, FitFuse shows only a slight disimprove-
ment in MAP score, despite it being merely an estimate
of the probabilities involved. On the first run, it actually
gains a marginally higher MAP score than PosFuse, which
indicates that although estimating probability may not be
expected to achieve the same quality results as a perfectly-
modelled probability distribution, this is not necessarily the
case.

4.3 Towards single-value training
Because of the onerous training needs, we are interested

in finding other values that can be substituted for a fitted
a-value in a y = a

x
style probability model. In order for

a candidate value to be suitable for use in this way, it is
required to satisfy three criteria:

• Correlation: It must be shown to correlate to the fitted
a-values.

• Training: It should require less exhaustive training cal-
culations than methods such as PosFuse and SlideFuse.

• Results: It must be competitive in terms of the evalu-
ation of fusion performance.

The first of these criteria is particularly important for se-
lecting what value to use. Logically, a high a-value indicates
that an input system is more likely to return relevant doc-
uments than one with a lower a-value. Clearly, this a-value
is linked to the overall performance of an input system. As
such, this motivates the use of established IR evaluation
metrics for fusion.

Evaluation metrics have been a key focus of IR research
for many years. Each is designed to measure the quality of
a result set in some way, with different metrics having their
own emphasis, strengths and weaknesses. The metric se-
lected for investigation in this work is the widely-used Mean
Average Precision (MAP) metric.

Figure 2 shows a graph of the fitted a-values (on the x-
axis) plotted against MAP (on the y-axis). Although the
two values are not shown to be directly proportional, a clear
upward trend can be seen. Input systems with higher fit-
ted a-values tend to also have higher MAP scores. Intuition
would dictate that this is not a surprising result: a sys-
tem with a greater tendency to return relevant documents
would typically achieve a higher MAP score on evaluation
(although the position of the relevant documents is also im-
portant).

A curve can be fitted for this graph also (and is indicated
by the straight line in Figure 2). However, it important to

Figure 2: Correlation between MAP score and fitted
a-value

bear in mind that a direct mapping from a MAP score to
an a-value is not necessarily required. The aim of the fu-
sion task is to rank the documents, rather than calculate
an accurate a-value. Given the formula used below in Sec-
tion 5, it can be shown that multiplying the MAP scores by
a constant to better approximate a-values does not affect
the ranking of the documents in the fused result set.

The second criterion required above is that the amount of
training effort should be less than that of alternative tech-
niques such as SlideFuse. SlideFuse requires knowledge of
the exact positions in which relevant documents were re-
turned in response to training queries. In contrast the pro-
posed approach requires only a single-value estimation of the
quality of the input system.

Finally, it is required to evaluate the effectiveness of using
a function of MAP score and document position as a fusion
strategy.

5. EVALUATION
In order to evaluate the effectiveness of the approach out-

lined above, it is necessary to carry out a number of exper-
iments. These experiments involved running this new tech-
nique (which we shall call “MAPFuse”) alongside a number
of alternatives.

5.1 Experiment Setup
As with the initial experiments outlined in Section 3, five

separate runs were performed. These use the same inputs
as in the earlier experiments. Each input was divided into a
set of training result sets and a set of fusion result sets. For
this, an 20%/80% split was used (i.e. 45 training queries
and 180 queries used for fusion).

Dividing query sets in this way alone may cause unrepre-
sentative results being obtained. For instance, early queries
(i.e. those used for training) may be disproportionately
straightforward (or indeed difficult) when compared with
those used for fusion. This may mean that differences be-
tween fusion techniques’ performance may be a consequence
of the training data rather than the algorithms themselves.

For this reason, each of the fusion runs was performed
five separate times, with the queries being shuffled into a



different randomised order before each time. Thus the set
of training queries was different each time. The evaluation
results reported here for each run are the average of each of
these five sets of shuffled inputs.

The baseline MAP score for each run is that achieved
by the best-performing individual input system (denoted by
MaxMAP). Training queries are ignored in this calculation,
so the figures presented relate to the same query set for each
technique.

Three data fusion algorithms were chosen for compari-
son. SlideFuse and CombMNZ are implemented as described
in [10] and [5], respectively. Training queries are also ignored
for CombMNZ, since that algorithm does not require a train-
ing phase. The implementation of PosFuse is as described
in Section 3, with the exception that the probabilities are
calculated on the training queries and then used to fuse the
fusion queries at a later stage, rather than being calculated
on the same result sets that are to be fused.

5.2 Defining MAPFuse
For the MAPFuse fusion algorithm, the training phase

requires only that the MAP score for each input system
on the training queries be calculated. This is performed
by trec eval, which is a tool provided by TREC to calcu-
late evaluation metrics for IR systems. Unlike the proof-
of-concept results shown in Section 3, relevance information
for the actual result sets being fused is not required, as the
MAP scores used for fusion are calculated using only the
training queries.

Once the relevant MAP scores have been calculated, they
are used in the fusion phase to calculate the scores on which
the documents are ranked in the final, fused result set.

The ranking score Rd attributed to document d is given
by

Rd =
∑
s∈S

MAPs

ps(d)
(10)

where S is the set of the input systems that returned doc-
ument d somewhere in their result sets, MAPs is the MAP
score associated with system s and ps(d) is the position in
which document d was ranked by system s.

The fact that the MAP score is divided by a document’s
position helps to leverage the Skimming Effect, whereas the
fact that the scores are added to give the document’s final
ranking score boosts documents that have appeared in mul-
tiple result sets and so makes use of the Chorus Effect.

5.3 Results
The results of running these experiments are presented in

Table 4. Values in bold face are the highest score achieved
by a fusion algorithm on a particular run. Asterisks are
used to indicate a statistically significant difference to the
performance of MAPFuse when measured using the t-test.

With the exception of CombMNZ, each of the fusion al-
gorithms achieves a higher MAP score than that of the best
individual input system (again shown as“MaxMAP”). MAP-
Fuse achieves comparable results to PosFuse and SlideFuse,
with the highest MAP score for three of the five runs. It also
shows a statistically significant improvement in MAP score
over MaxMAP and CombMNZ on all runs. As an aside, it
is of note that, unlike the situation in Section 3, the scores
achieved by SlideFuse are consistently higher than those of
PosFuse (with the sole exception of run5). This may pos-
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run1 0.5468* 0.5767 0.5591* 0.5728 0.3361*
run2 0.5120* 0.5693 0.5682* 0.5718 0.5404*
run3 0.4555* 0.5132 0.5045* 0.5171 0.1842*
run4 0.4357* 0.4711 0.4591 0.4665 0.1785*
run5 0.4084* 0.4858 0.4777* 0.4681* 0.4277*

Table 4: MAP Scores From Fusion Runs. The high-
est MAP score for a fusion technique on each run
is in bold. Asterisks indicate a statistically signifi-
cant difference when compared to MAPFuse using
the t-test.

sibly be explained by the lower quantity of training queries
being used, with the sliding window beginning to show its
advantages over the strictly position-based PosFuse.

The difference between the MAP scores of the three prob-
abilistic techniques is quite small (MAPFuse’s score is never
more than 3% higher than PosFuse or 4% higher than that
of SlideFuse). It is notable that despite this, the difference
between MAPFuse and PosFuse is statistically significant in
4 of the 5 runs. Another observation is that for the two
runs in which SlideFuse achieves a higher MAP score than
MAPFuse, this difference is not statistically significant.

Despite these observations, the aim of the experiment is
not necessarily to achieve significantly higher MAP scores.
According to the third success criterion in Section 4, we
merely require comparable performance with competing tech-
niques. The principal advantage is that comparable retrieval
results can be achieved by using only a single figure to repre-
sent the effectiveness of an underlying input system, rather
than the detailed information about relevant documents’ po-
sitions that is required by the other algorithms.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have examined the use of the probabil-

ity of relevance in performing data fusion. In this context,
we use “probability of relevance” to mean the probability
that a document returned by a particular input system in a
particular position in its result set is relevant.

Initially we showed that if a fully accurate model of the
probability of relevance at each position is available, positive
fusion results can be achieved using these probabilities to
calculate the ranking scores for documents. Following from
this, we have shown that these probabilities can be modelled
by a function of the form y = a

x
. Using the MAP score

of each input system on a number of training queries as
an substitute for a, we have shown that comparable MAP
scores to alternative fusion algorithms can be achieved.

The benefits of this approach are principally in the level
of training data that is required. Whereas algorithms like
SlideFuse required detailed training data on the specific lo-
cation of relevant documents within result sets, MAPFuse
requires only a single summary metric to represent the qual-
ity of each input system being used.

For the purposes of this paper, the common Mean Average
Precision (MAP) evaluation metric was used as the single-
value substitution for a. However, a range of alternative



metrics are available and so future work will concentrate on
evaluating the impact of using alternative metrics.

Additionally, a more exhaustive study on a greater num-
ber of document collections will be necessary to demonstrate
the wider applicability of this work. Such a study would
also include a separation of the training and fusion phases
so that each is carried out on a different document collec-
tion (although the retrieval systems generating each result
set would not change). This would be an important stage
in demonstrating that this type of fusion could be employed
in a real-world information retrieval system.
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