
ACRE: Agent Conversation Reasoning Engine
David Lillis

School of Computer Science and Informatics
University College Dublin

Email: david.lillis@ucd.ie
Rem W. Collier

School of Computer Science and Informatics
University College Dublin

Email: rem.collier@ucd.ie

Abstract—Within Multi Agent Systems, communication by
means of Agent Communication Languages has a key role to
play in the co-operation, co-ordination and knowledge-sharing
between agents. Despite this, complex reasoning about agent
messaging and specifically about conversations between agents,
tends not to have widespread support amongst general-purpose
agent programming languages.

ACRE (Agent Communication Reasoning Engine) aims to
complement the existing logical reasoning capabilities of agent
programming languages with the capability of reasoning about
complex interaction protocols in order to facilitate conversations
between agents. This paper outlines the aims of the ACRE project
and gives details of the functioning of a prototype implementation
within the AFAPL2 agent programming language.

I. INTRODUCTION

Communication is a vital part of a Multi Agent System
(MAS). Agents make use of communication in order to aid
mutual cooperation towards the achievement of their individual
or shared objectives. The sharing of knowledge, objectives
and ideas amongst agents is facilitated by the use of Agent
Communication Languages (ACLs). The importance of ACLs
is reflected by the widespread support for them in agent
programming languages and toolkits, many of which have
ACL support built-in as core features.

In many MASs, communication takes place by way of
individual messages without formal links between them. An
alternative approach is to group related messages into con-
versations: “task-oriented, shared sequences of messages that
they observe, in order to accomplish specific tasks, such as a
negotiation or an auction” [1].

This paper presents the Agent Conversation Reasoning
Engine (ACRE). The principal aim of the ACRE project is
to integrate interaction protocols into the core of existing
agent programming languages. This is done by augmenting
their existing reasoning capabilities and support for inter-
agent communication by adding the ability to track and
reason about conversations. Currently at the stage of an initial
prototype, ACRE has been integrated with the AFAPL2 Agent
Programming Language [2], which runs on the Agent Factory
platform [3]. The longer-term goals of ACRE include its use
within other mainstream programming languages.

The principal aim of this paper is to outline the goals of the
ACRE project and to present the integration of the prototype
system into AFAPL2.

This paper is laid out as follows: Section II outlines some
related work on agent interaction. Section III then provides
an overview of the aims and scope of the ACRE project.
Following this, details of the integration of ACRE into the
Agent Factory framework are given in Section IV. The re-
lationships between message performatives and agent goals
are discussed in Section V, followed by an example of a
simple one-shot auction implemented via ACRE in Section VI.
Finally, Section VII outlines some conclusions along with
ideas for future work.

II. RELATED WORK

In the context of Agent Communication Languages, two
standards have found widespread adoption. The Knowledge
Query and Manipulation Language (KQML) was the firstly
widely-adopted format for agent communication [4]. An alter-
native agent communication standard was later developed by
the Foundation for Intelligent Physical Agents (FIPA). FIPA
ACL utilises what it considers to be a minimal set of English
verbs that are necessary for agent communication. These are
used to define a set of performatives that can be used in ACL
messages [5]. These performatives, along with their associated
semantics, are defined in [6].

Recognising that one-off messages are limited in their power
to be used in more complex interactions, FIPA also defined a
set of interaction protocols [7]. These are designed to cover
a set of common interactions such as one agent requesting
information from another, an agent informing others of some
event and auction protocols.

Support for either KQML or FIPA ACL communication is
frequently included as a core feature in many agent tookits
and frameworks, native support for interaction protocols is less
common. The JADE toolkit provides specific implementations
of a number of the FIPA interaction protocols [8]. It also
provides a Finite State Machine (FSM) behaviour to allow
interaction protocols to be defined. Jason includes native sup-
port for communicative acts, but does not provide specific tools
for the development of agent conversations using interaction
protocols. This is left to the agent programmer [9, p. 130]. A
similar level of support is present within the Agent Factory
framework [10].

There do exist a number of toolkits, however, that do include
support for conversations. For example, the COOrdination

Language (COOL) uses FSMs to represent conversations [11].
Here, a conversation is always in some state, with messages
causing transitions between conversation states. Jackal [12]
and KaOS [13] are other examples of agent systems mak-
ing use of FSMs to model communications amongst agents.
Alternative representations of Interaction Protocols include
Coloured Petri Nets [14] and Dooley Graphs [15].

III. ACRE OVERVIEW

ACRE is aimed at providing a comprehensive system for
modelling, managing and reasoning about complex interac-
tions using protocols and conversations. Here, we distinguish
between a protocols’ and conversations. A protocol is defined
as a set of rules that dictate the format and ordering of
messages that should be passed between agents that are
involved in prolonged communication (beyond the passing of a
single message). A conversation is defined as a single instance
of multiple agents following a protocol in order to engage
in communication. It is possible for two agents to engage in
multiple conversations that follow the same protocol.

Such an aim can only be realised effectively if a number of
features are already available. These include:

• Protocol definitions understandable by agents: Inter-
action protocols must be declared in a language that all
agents must be able to understand and share. This also
has the advantage that the protocol definition is separated
from its implementation in the agent, thus providing a
programmer with a greater understanding of the format
the communication is expected to take. ACRE uses an
XML representation of a finite state machine for this
purpose.

• Shared ontologies: A shared vocabulary is essential to
agents understanding each other’s communications. A
shared ontology defines concepts about which agents
need to be capable of reasoning.

• Plan repository: With the two above features in place, an
agent may reason about the sequence of messages being
exchanged, as well as the content of those messages.
This reasoning will typically result in an agent deciding
to perform some action as a consequence of receiving
certain communications. In this case, it is useful to have
available a shareable repository of plans that agents may
perform so that new capabilities may be learned from
others.

The presence of these features aid greatly in the realisation
of ACRE’s aims. The principal aims are as follows:

• External Monitoring of Interaction Protocols: At its
simplest level, conversation matching and recognition
of interaction protocols allows for a relatively simple
tool operating externally to any of the agents. This can
intercept and read messages at the middleware level and is
suitable for an open MAS in which agents communicate
via FIPA ACL. This is a useful tool for debugging pur-
poses, allowing developers to monitor communication to
ensure that agents are following protocols correctly. This
is particularly important where conversation management
has been implemented in an ad-hoc way, with incoming

and outgoing messages being treated independently and
without a strong notion of conversations.

• Internal Conversation Reasoning: On receipt of a FIPA
ACL message, it should be possible to identify the
protocol being followed by means of the protocol
parameter defined in the message (for the specification
of the parameters available in a FIPA ACL message
see [16]). Similarly, the initiator of a conversation should
also set the conversation-id parameter, which is a
unique identifier for a conversation. By referring to the
the protocol identifier, an agent can make decisions about
its response by consulting the protocol specification.
Similarly, the conversation identifier may be matched
against the stored history of ongoing conversations.
ACRE aims to use this information to analyse the status
of conversations and generate appropriate goals for the
agent to successfully continue the conversation along the
appropriate lines for the protocol that is specified. The
use of goals follows [17]. Goals represent the motivations
of the participants in a conversation. Thus the agents’
engagement in a particular conversation is decoupled
from the individual messages that are being exchanged,
allowing greater flexibility in reasoning about their reac-
tions and responses.

• Organisation of Incoming Messages: It is possible that
an agent communicating with agents in another system
may receive messages that do not specify their protocol
and/or conversation identifier. In this case, it is useful for
the agent to have access to definitions of the protocols in
which it is capable of engaging so as to match these with
incoming messages so as to categorise the messages.

• Agent Code Verification: The ultimate aim of ACRE is
to facilitate the verification of certain aspects of agent
code. In particular, given integration of conversation
reasoning into a programming language, it should be
possible to verify whether or not an agent is capable
of engaging in a conversation following a particular
protocol.

IV. AGENT FACTORY

Agent Factory is an extensible, modular and open frame-
work for the development of multi agent systems [3]. The
primary agent programming language packaged with Agent
Factory is AFAPL2 [2], although it also includes support for
other agent programming languages such as ALPHA [18] and
AgentSpeak [9].

This principal aim of this paper is to outline the integration
of ACRE with AFAPL2. AFAPL2 is an agent programming
language that was initially based on the Agent0 language,
with notions of belief and commitment at its core [19]. Its
capabilities have been augmented since, however, with the
addition of such features as goal reasoning [20] and roles [10].

The existing goal-reasoning capabilities of AFAPL2 (out-
lined in [20]) required some extension in order to be usable
for the purposes of ACRE.

AFAPL2 contains two types of activities (code that allows
an agent to perform some task): actions and plans. An action is

a simple activity that is implemented by way of a single Java
class, known as an actuator. Actions are designed to be used
as primitive activities that can be grouped together to carry
out more complex tasks. A plan is such a grouping, making
use of plan operators (such as operators to carry out several
actions in sequence or in parallel) to combine actions. Each
activity has three components:

• A precondition that specifies the circumstances in which
the activity may be executed. This is expressed in terms
of beliefs that the agent must have when attempting to
execute the activity.

• A postcondition that indicates the anticipated mental state
on successful completion of the activity. This is expressed
in terms of beliefs the agent will expect to have once the
activity has completed.

• The body indicates how the activity can be carried out:
for actions this is a Java class name whereas for plans
this is the expression of how the actions are combined
for a more complex activity.

In the existing implementation of goal-handling, goals are
achieved by comparing them with the postconditions of the
activities that the agent is capable of performing. Figure 1
shows an example definition of a plan designed to check
whether a host (identified by an IP address contained in
the ?ip_addr variable) is responding to ping requests (the
actual code implementing the plan is omitted). The precon-
dition BELIEF(true) is always satisfied. The postcondi-
tion BELIEF(pingStatus(?ip_addr,?status)) in-
dicates that on successful execution of this plan, the agent
will expect to have a belief about the status of the IP address
that it attempted to check.

PLAN checkPingStatus(?ip_addr) {
PRECONDITION BELIEF(true);
POSTCONDITION BELIEF(pingStatus(?ip_addr,?status));

...
}

Fig. 1. AFAPL2 Plan Definition (plan body omitted)

GOAL(pingStatus(192.168.1.1,?status)) in-
dicates that the agent aims to have a belief about the status of
the host with the IP address 192.168.1.1. This interpreta-
tion of the goal would be contained in the relevant ontology.
Here, ?status is a variable (indicated by the ? sigil) that
can match against anything. Thus it is not a goal to bring about
a particular status; rather just to find out what that status is.

An agent having this goal would identify the
checkPingStatus plan to be a candidate plan for
its achievement.. This is the case for two reasons. Firstly, its
postcondition matches the goal, meaning that the agent will
anticipate its goal being achieved by a successful execution of
this plan and secondly because its precondition is satisfied by
the current belief set of the agent (since an agent will always
believe true to be true). In deciding on the appropriate
course of action, the goal reasoning engine will identify all
such candidate activities and execute one. In the event that
no candidate activities can be found, the goal is dropped as
unachievable.

A significant drawback with this method of reasoning is
that if no activity is available that can directly result in a goal
state being brought about, no further effort is made to achieve
it. However, this does not necessarily mean that the agent is
incapable of achieving its goal. In the event of an activity being
identified whose postcondition is expected to satisfy the goal
but whose precondition is not satisfied by the current state of
the agent, the modified goal reasoning engine examines other
activities to evaluate whether any are available that can satisfy
that precondition. An example of this reasoning process is
given in Section VI.

V. MAPPING PERFORMATIVES TO GOALS AND BELIEFS

In AFAPL2, the existing method of handing message re-
ceipts is simply to adopt a belief that the message has
been received, leaving it as an exercise to the application
programmer to deal with this event. One reason behind this
method is that there is currently no support for messages to be
linked into conversations. In contrast, ACRE can analyse the
conversations and protocols about which the agent is aware
and generate more appropriate goals and beliefs whenever
messages are received and sent.

The goals or beliefs that are generated depend on the context
within which a message is sent. For example, a propose
message is used to indicate that the sender proposes to perform
some action under certain conditions. There are, however,
more than one reason why an agent may receive such a
message. In one situation, the proposal is unsolicited (for
example to initiate a FIPA Propose Interaction Protocol [21]).
In this case, the message has no prior context and is unrelated
to any previous experience of the recipient. By its nature, a
propose message requires a response and so the recipient
agent must evaluate the proposal and communicate whether or
not it is willing to accept the proposal. As such, this situation
will result in the adoption of a goal indicating that this type
of evaluation should take place.

In contrast, a proposal may have been solicited by the recip-
ient. The message may be matched to an existing conversation,
either by means of an explicit conversation ID or by matching
its content against that expected by the relevant protocol. By
analysing this conversation, the agent can identify whether or
not a call for proposals was previously sent out. In sending
such a call, the agent will have been pursuing some other goal
and so the adoption of an additional goal to handle the proposal
is not desirable. Instead, a belief is adopted to indicate that the
proposal has been received.

This approach also allows the agent to engage in separate
but related conversations with different agents concurrently, as
is shown in the example in Section VI.

Another example of the run-time conversation reasoning is
on the receipt of an accept-proposal message. In this
case, the treatment is different because of the future messages
that the relevant protocol may or may not require to be sent
in response. Under some protocols, an accept-proposal
message is the final message in the conversation (e.g. the
FIPA Propose Interaction Protocol [21] or the Vickrey Auction
shown in Section VI). Here, a goal should be adopted merely

to perform the task that has been proposed and accepted. No
further communication is required.

In other cases, such as within a FIPA Contract Net Interac-
tion Protocol [22], the recipient of the accept-proposal
message is required to communicate the result of performing
the stated action back to the sender. In this case, the goal to
be satisfied is twofold: firstly to perform the action and then
communicate the result of this action to the sender. In reality,
only one goal is necessary, as it is impossible to communicate
the result of an action that has not been committed. This
should be reflected in the preconditions of any activity that
communicates the result of an action.

In the case of the sender of a message, it is not necessary
to generate these goals. Here, the message is sent by the agent
as a result of it having a goal that must be satisfied.

VI. EXAMPLE: VICKREY AUCTION

In order to demonstrate how the ACRE system works, we
use a Vickrey Auction Interaction Protocol. Figure 2 illustrates
the protocol using Agent UML [23].

A Vickrey auction is a non-iterated auction, in that each
bidder submits only a single bid, which is either accepted
or rejected. It is also a sealed-bid auction, in that bids are
communicated only to the auctioneer. In a Vickrey Auction,
the winner of the auction is the bidder who submits the highest
bid, though the ultimate price paid is equal to the second-
highest bid.

In this example, one agent is assumed to desire that a task
be performed by another agent and requests other agents to
submit proposals for the performance of this task. This agent is
referred to as the “Auctioneer”. The auction is initiated by the
Auctioneer sending a cfp message to a number of potential
“Bidder” agents. Each bidder considers the call for proposals
and decides whether or not to participate in the auction. Having
done so, it indicates its decision to the Auctioneer either by
submitting a bid (via a propose message) or by explicitly
declining to do so (using a refuse message).

After receiving all of these responses, the Auctioneer must
decide which is the winner of the auction and communicate
its decision to each of the Bidders. This is done by sending a
accept-proposal message to the successful bidder and a
reject-proposal message to those that are unsuccessful.

A. ACRE Implementation Example

As noted in the above section, a Vickrey auction is typically
initiated by an agent that wishes to have some task performed
by another agent. This will generally be indicated by the agent
adopting a goal to have the task performed.

In this example, we consider a MAS consisting of agents
that are situated in a virtual grid world that contains items that
the agents are required to collect. We begin the case study in a
situation where one agent (which will become the Auctioneer
agent) has discovered the location of an item and wishes to
have it collected. This is reflected by the adoption of a goal,
which is shown in Figure 4.

The addition of this goal to the agent’s mental state will
cause the goal reasoning engine to evaluate the options open

Fig. 2. AUML Diagram for a Vickrey-style auction

GOAL(performedTask(collected(item(20,25))))

Fig. 4. Initial goal to trigger a Vickery Auction

to it to satisfy this goal. One option may be to execute a plan
such as that defined in Figure 5. This is a plan that allows
the agent to carry out the task (i.e. collect the referenced
item) itself, without the need for engaging in conversation
with other agents. However, it may alternatively be the case
that the agent is not capable of performing the collection itself
(if, for example, it is a coordinator of other agents). In such a
scenario, it may be necessary to engage with other agents in
order to find another that will be capable of (and willing to)
carry out the task instead. The holding of an auction is one
common way of solving such a problem.

PLAN collectItem(?x,?y) {
PRECONDITION BELIEF(true);
POSTCONDITION

BELIEF(performedTask(collected(item(?x,?y))));
...

}

Fig. 5. Plan Definition to allow an agent collect items (plan body omitted)

Sample code to implement an Auctioneer agent is presented
in Figure 3. This include two plans used in the implementation
of a Vickrey Auction. In addition to the two plans, the
agent also includes an AuctionModule, which contains the
code to reason about the bids that have been received and
decide upon a winner. Two actuators are also present: one
(addBid) to add a received bid to the AuctionModule and
the other (endAuction) to trigger the ending of the auction
and cause a winner to be decided upon. Finally, a perceptor
is also present (auctionPerceptor) that monitors the state of
the AuctionModule and adopts beliefs based thereon. These
include beliefs about who the winners and losers of the auction
are, following the end of the auction.

As outlined in Section IV, the goal reasoning engine firstly
seeks an activity (either an action or a plan) whose postcon-

IMPORT com.agentfactory.afapl2.core.agent.FIPACore;
IMPORT agent.ACREAgent;

PLAN cfpTaskSolver(?task) {
PRECONDITION BELIEF(haveProposal(bidfor(?task,?bid),?agentID,?cid));
POSTCONDITION BELIEF(performedTask(?task));

BODY
SEQ (

FOREACH (haveProposal(bidfor(?task,?amount),?agentID,?cid),
addBid(?task,?agentID,?amount,?cid),

),
endAuction,
FOREACH (BELIEF(status(?task,?agentID,winner)),

accept-proposal(?agentID,?task)
),
FOREACH (BELIEF(status(?task,?agentID,loser)),

reject-proposal(?agentID,?task)
),
ADOPT(performedTask(?task))

);
}

PLAN solicitProposals(?task) {
PRECONDITION BELIEF(neighbour(agentID(?aname,?aaddr)));
POSTCONDITION BELIEF(haveProposal(bidfor(?task,?bid),agentID(?aname,?aaddr),?cid));

BODY
FOREACH (BELIEF(neighbour(?agentID)),

SEQ (
cfp(?agentID,bidfor(?task)),
OR (

AWAIT(BELIEF(haveProposal(?bid,agentID(?aname,?aaddr),?cid))),
AWAIT(BELIEF(haveRefusal(?task,agentID(?aname,?aaddr),?cid))),
SEQ(DELAY(20), ADOPT(BELIEF(timeout(?agentID))))

)
)

);
}

LOAD_MODULE AuctionModule module.AuctionModule;

PERCEPTOR auctionPerceptor {
CLASS perceptor.AuctionPerceptor;

}

ACTION endAuction {
CLASS actuator.EndAuctionActuator;

}

ACTION addBid(?task, ?agentID, ?amount, ?cid) {
actuator.AddBidActuator;

}

Fig. 3. AFAPL2 Auctioneer Agent

dition satisfies the goal. In this example, the postcondition
of the cfpTaskSolver plan will match the goal. This
postcondition contains the variable ?task, which is matched
against the goal. This has the effect that the plan will be
invoked with collected(item(20,25)) set as the value
for the ?task variable.

However, this plan by itself will not be capable of bringing
about successful achievement of the goal. This is because it
also has a precondition that indicates that in order for the plan

to succeed, the agent must already believe that it has received
at least one other proposal from another agent to perform the
task. As this is not the case, the goal reasoner must identify
another activity that will bring about that precondition.

The solicitProposals plan has a postcondition that
satisfies the precondition of cfpTaskSolver and is ex-
ecutable if the agent is aware of at least one neighbour-
ing agent that it can invite to the auction. Thus the strat-
egy the Auctioneer will employ will be to firstly execute

IMPORT agent.ACREAgent;

PLAN cfpProposal(?task, ?initiator, ?cid) {
PRECONDITION BELIEF(canBid(?task, ?amount, ?cid));
POSTCONDITION BELIEF(respondedToCfp(bidfor(?task), ?initiator, ?cid));

BODY
propose(?initiator,bid(?task,?amount));

}

PLAN cfpRefusal(?task,?initiator,?cid) {
PRECONDITION BELIEF(noBid(?task,?cid));
POSTCONDITION BELIEF(respondedToCfp(bidfor(?task),?initiator,?cid));

BODY
refuse(?initiator,bid(?task));

}

ACTION generateBid(?task, ?cid) {
PRECONDITION BELIEF(conversation(?cid,acre-vickrey));
POSTCONDITION BELIEF(canBid(?task,?amount,?cid));

CLASS is.lill.acre.actuator.GenerateBidActuator;
}

Fig. 6. AFAPL2 Bidder Agent

solicitProposals and then cfpTaskSolver in the
expectation that the goal will be satisfied afterwards (by
another agent performing the task).

The body of solicitProposals firstly considers
all of the agents it has knowledge of (the FOREACH
plan operator will execute the following code in paral-
lel for every belief in the agent’s belief set that matches
BELIEF(neighbour(?agentID)), where ?agentID
can is bound in turn to the contents of each belief). For each
of these agents it firstly sends a message to initiate the auction
(the cfp action is part of the standard FIPACore agent that
is imported at the top of the file). It then either waits until
one of the following events has occurred: a) it believes it has
received a proposal from the bidder, b) it believes that it has
received a rejection from the bidder or c) some timeout period
elapses, following which it adopts a belief to that effect. Once
one of these things has occurred, the plan has completed.

It is important to note at this stage that the postcondition of
solicitProposals may not be satisfied by its execution.
The postcondition is designed to indicate the intended result of
the plan, rather than enumerating all of its possible outcomes.
In this case, the purpose of the plan is to solicit bids from
other agents as part of an auction. Although it is possible that
all agents could refuse to participate or fail to respond, it is not
logical for an agent to issue a call for proposals in the hope
that this will occur. From a goal-reasoning point of view, if no
bids are received then the precondition of cfpTaskSolver
is not satisfied and the goal is considered to be unsolvable.
This is a logical outcome since the agent has no capability of
performing the task itself and has failed to find another agent
that is willing to do so on its behalf.

The beliefs about the receipt of a proposal or refusal are
generated by ACRE reasoning about the conversations. This
is an example of the situation presented in Section V where

ACRE is aware that the proposal or refusal are in response to
a call for proposals that was issued by the Auctioneer and so
generates a belief rather than a goal.

If at least one bid is received then the precondition of
cfpTaskSolver is satisfied and that plan may be executed.
In this plan, the Auctioneer evaluates each of the proposals
it has received and adds it to the AuctionModule that takes
care of the decision-making with regard to the winner of the
auction. Once all of the bids have been added, the auction
can be ended. The auction perceptor will cause a set of
beliefs about the auction to be adopted. These are used
to send accept-proposal messages to the winner and
reject-proposal messages to each of the losers of the
auction.

In the context of the auctioneer, one advantage of this
approach is that these plans are not limited to use within a
Vickrey Auction. For example, a Contract Net Protocol [22]
is also initiated by sending a cfp message and awaiting a
response by means of either a propose or refuse message.

Figure 6 contains the AFAPL2 code for the Bidder agents.
These agents must respond to the cfp message sent by the
Auctioneer to initiate the auction. This is done by means of
ACRE posting an appropriate goal for the agent’s goal reasoner
to solve. In this example, the goal is satisfied by the identi-
cal postconditions of the cfpProposal and cfpRefusal
plans. However, there is no activity available with a postcon-
dition that matches the precondition of cfpRefusal. On the
other hand, cfpProposal’s precondition can be satisfied
by executing the generateBid action (providing that its
precondition that the conversation, represented by the variable
?cid is of the type “acre-vickrey”). This is executed, followed
by cfpProposal, assuming a belief that the agent is in a
position to bid has been created.

The generateBid action may, however, cause the agent

to decline to make a bid (indicated by adopting a belief of the
type noBid). This would mean that the precondition for the
cfpProposal plan has not been satisfied and so it cannot
be executed to satisfy the goal. At this point, the goal reasoner
will re-evaluate the goal against the current belief set of the
agent and, on finding the belief that the agent will not make a
bid, now sees that the precondition of cfpRefusal is already
satisfied by the current mental state of the agent. Thus this plan
is called instead, causing a refuse message to be sent to the
Auctioneer.

This example demonstrates one drawback of the use of
postconditions in AFAPL2 to indicate the desired outcomes of
activities. In this case, planning would be better facilitated by
the express inclusion of noBid as a belief that will be adopted
as an alternative outcome of the generateBid plan. As no
express support is available for the enumeration of byproducts
of activites (or the beliefs associated with a plan failing in its
purpose).

No particular code is required to handle the response
from the Auctioneer. In the event of the receipt of a
accept-proposal message, this indicates that the Bidder
is required to carry out some task that it has proposed
to do, and so ACRE will adopt a goal to that effect. A
reject-proposal, on the other hand, does not require any
further action from the Bidder, so ACRE will merely adopt a
belief to that effect that can be reasoned about by the agent.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype of the ACRE conversation
reasoning system and specifically its integration into the
AFAPL2 agent programming language. Although currently
limited to AFAPL2, it is intended that ACRE will be used in
conjunction with several other agent programming languages.

Although full integration with several languages is desirable,
it may be necessary to adapt ACRE’s workings to the specific
needs and capabilities of particular languages. For example,
not all languages support the use of preconditions and postcon-
ditions of activities to facilitate reasoning about them. On the
other hand, support for ACL standards is widespread and so
the grouping of messages into conversations is part of ACRE
that is likely to be more widely applicable in its current form.

The availability of cross-platform communication tools such
as ACRE, together with shared ontologies and protocol def-
initions can only aid interoperability between distinct agent
platforms, toolkits and programming languages.

REFERENCES

[1] Y. Labrou, “Standardizing agent communication,” Multi-
Agents Systems and Applications (Advanced Course on
Artificial Intelligence), pp. 74–97, 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=567252

[2] C. Muldoon, G. OHare, R. W. Collier, and M. OGrady,
Towards Pervasive Intelligence: Reflections on the Evolution
of the Agent Factory Framework. Boston, MA: Springer
US, 2009, ch. 6, pp. 187–212. [Online]. Available:
http://www.springerlink.com/content/g813865gq77731p1

[3] R. Collier, G. O’Hare, T. Lowen, and C. Rooney, “Beyond Prototyping
in the Factory of Agents,” in Multi-Agent Systems and Application III:
3rd International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS 2003), Prague, Czech Republic, 2003.

[4] T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an Agent
Communication Language,” in Proceedings of the Third International
Conference on Information and Knowledge Management, Gaithersburg,
MD, 1994, pp. 456–463.

[5] S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS Agent Plat-
form: Open Source for Open Standards,” in Proceedings of the 5th
International Conference and Exhibition on the Practical Application
of Intelligent Agents and Multi-Agents (PAAM2000), Manchester, 2000,
p. 368.

[6] Foundation for Intelligent Physical Agents, “FIPA Commu-
nicative Act Library Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00037/

[7] ——, FIPA Interaction Protocol Library Specification, Std., 2000.
[Online]. Available: http://www.fipa.org/specs/fipa00025/

[8] F. Bellifemine, G. Caire, T. Trucco, and G. Rimass,
“Jade Programmer’s Guide,” 2007. [Online]. Available:
http://jade.tilab.com/doc/programmersguide.pdf

[9] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge,
Programming multi-agent systems in AgentSpeak using
Jason. Wiley-Interscience, 2007. [Online]. Available:
http://books.google.com/books?hl=en&lr=&id=AJHD4GkIQs0C&pgis=1

[10] R. Collier, R. Ross, and G. M. P. O’Hare, “A Role-Based Approach
to Reuse in Agent-Oriented Programming,” in AAAI Fall Symposium
on Roles, an Interdisciplinary Perspective (Roles 2005), Arlington, VA,
USA, 2005.

[11] M. Barbuceanu and M. S. Fox, “COOL: A language for describing
coordination in multi agent systems,” in Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-95), 1995,
pp. 17–24.

[12] S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield,
and A. Boughannam, “Jackal: a Java-based Tool for Agent Develop-
ment,” in Working Papers of the AAAI-98 Workshop on Software Tools
for Developing Agents. AAAI Press, 1998.

[13] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley, “KAoS:
Toward an industrial-strength open agent architecture,” Software Agents,
pp. 375–418, 1997.

[14] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng,
“Modeling agent conversations with colored petri nets,” in
In: Workshop on Specifying and Implementing Conversation
Policies, Third International Conference on Autonomous Agents
(Agents ’99), Seattle, 1999, pp. 59–66. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6521

[15] H. Parunak, “Visualizing Agent Conversations: Using Enhanced Dooley
Graphs for Agent Design and Analysis,” in Proceedings of the Second
International Conference on Multi-Agent Systems (ICMAS), 1996.

[16] Foundation for Intelligent Physical Agents, “FIPA ACL
Message Structure Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00061/

[17] L. Braubach and A. Pokahr, “Goal-Oriented Interaction Protocols,” in
MATES ’07: Proceedings of the 5th German Conference on Multiagent
System Technologies, vol. 4687. Leipzig, Germany: Springer, 2007, pp.
85–97.

[18] R. Collier, R. Ross, and G. M. P. O’Hare, “Realising Reusable Agent Be-
haviours with ALPHA,” in Proceedings of the 3rd German Conference
on Multi-Agent System Technologies (MATES 05), Koblenz, Germany,
2005, pp. 210–215.

[19] Y. Shoham, “Agent0: An agent-oriented programming language and its
interpreter,” Journal of Object-Oriented Programming, vol. 8, no. 4, pp.
19–24, 1991.

[20] M. Dragone, D. Lillis, R. W. Collier, and G. M. P. O’Hare, “Practical
Development of Hybrid Intelligent Agent Systems with SoSAA,” in
Proceedings of the 20th Irish Conference on Artificial Intelligence and
Cognitive Science, Dublin, Ireland, August 2009.

[21] Foundation for Intelligent Physical Agents, “FIPA Propose
Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00036

[22] Foundation For Intelligent Physical Agents, “FIPA Contract
Net Interaction Protocol Specification,” 2002. [Online]. Available:
http://www.fipa.org/specs/fipa00029

[23] B. Bauer, J. Müller, and J. Odell, “Agent UML: A Formalism for
Specifying Multiagent Software Systems,” Int. Journal of Software
Engineering and Knowledge Engineering, vol. 11, no. 3, pp. 207–230,
2001.

