Augmenting Agent Platforms to Facilitate
Conversation Reasoning

David Lillis and Rem W. Collier

School of Computer Science and Informatics
University College Dublin
david.lillis,rem.collier@ucd.ie

Abstract. Within Multi Agent Systems, communication by means of
Agent Communication Languages (ACLs) has a key role to play in the
co-operation, co-ordination and knowledge-sharing between agents. De-
spite this, complex reasoning about agent messaging, and specifically
about conversations between agents, tends not to have widespread sup-
port amongst general-purpose agent programming languages.

ACRE (Agent Communication Reasoning Engine) aims to complement
the existing logical reasoning capabilities of agent programming lan-
guages with the capability of reasoning about complex interaction pro-
tocols in order to facilitate conversations between agents. This paper
outlines the aims of the ACRE project and gives details of the function-
ing of a prototype implementation within the Agent Factory multi agent
framework.

1 Introduction

Communication is a vital part of a Multi Agent System (MAS). Agents make use
of communication in order to aid mutual cooperation towards the achievement of
their individual or shared objectives. The sharing of knowledge, objectives and
ideas amongst agents is facilitated by the use of Agent Communication Lan-
guages (ACLs). The importance of ACLs is reflected by the widespread support
for them in agent programming languages and toolkits, many of which have ACL
support built-in as core features.

In many MASs, communication takes place by way of individual messages
without formal links between them. An alternative approach is to group related
messages into conversations: “task-oriented, shared sequences of messages that
they observe, in order to accomplish specific tasks, such as a negotiation or an
auction” [1].

This paper presents the Agent Conversation Reasoning Engine (ACRE). The
principal aim of the ACRE project is to integrate interaction protocols into
the core of existing agent programming languages. This is done by augmenting
their existing reasoning capabilities and support for inter-agent communication
by adding the ability to track and reason about conversations. Currently at
the stage of an initial prototype, ACRE has been integrated with several agent
programming languages running as part of the Common Language Framework

of the Agent Factory platform [2]. The longer-term goals of ACRE include its
use within other mainstream agent frameworks and languages.

The principal aim of this paper is to outline the goals of the ACRE project
and to discuss its integration into Agent Factory.

This paper is laid out as follows: Section 2 outlines some related work on
agent interaction. Section 3 then provides an overview of the aims and scope of
the ACRE project. The model used to reason about conversations is presented
in Section 4. ACRE protocols are defined in an XML format that is outlined in
Section 5, followed by an example of a conversation in execution in Section 6.
Details of the integration of ACRE into the Agent Factory framework are given
in Section 7. Finally, Section 8 outlines some conclusions along with ideas for
future work.

2 Related Work

In the context of Agent Communication Languages, two standards have found
widespread adoption. The first widely-adopted format for agent communication
was the Knowledge Query and Manipulation Language (KQML) [3]. An alterna-
tive agent communication standard was later developed by the Foundation for
Intelligent Physical Agents (FIPA). FIPA ACL utilises what it considers to be a
minimal set of English verbs that are necessary for agent communication. These
are used to define a set of performatives that can be used in ACL messages [4].
These performatives, along with their associated semantics, are defined in [5].

Recognising that one-off messages are limited in their power to be used in
more complex interactions, FIPA also defined a set of interaction protocols [6].
These are designed to cover a set of common interactions such as one agent
requesting information from another, an agent informing others of some event
and auction protocols.

Support for either KQML or FIPA ACL communication is frequently in-
cluded as a core feature in many agent toolkits and frameworks, native support
for interaction protocols is less common. The JADE toolkit provides specific
implementations of a number of the FIPA interaction protocols [7]. It also pro-
vides a Finite State Machine (FSM) behaviour to allow interaction protocols to
be defined. Jason includes native support for communicative acts, but does not
provide specific tools for the development of agent conversations using interac-
tion protocols. This is left to the agent programmer [8, p. 130]. A similar level
of support is present within the Agent Factory framework [9].

There do exist a number of toolkits, however, that do include support for
conversations. For example, the COOrdination Language (COOL) uses FSMs
to represent conversations [10]. Here, a conversation is always in some state,
with messages causing transitions between conversation states. Jackal [11] and
KaOS [12] are other examples of agent systems making use of FSMs to model
communications amongst agents. Alternative representations of Interaction Pro-
tocols include Coloured Petri Nets [13] and Dooley Graphs [14].

3 ACRE Overview

ACRE is aimed at providing a comprehensive system for modelling, managing
and reasoning about complex interactions using protocols and conversations.
Here, we distinguish between protocols and conversations. A protocol is defined
as a set of rules that dictate the format and ordering of messages that should be
passed between agents that are involved in prolonged communication (beyond
the passing of a single message). A conversation is defined as a single instance of
multiple agents following a protocol in order to engage in communication. It is
possible for two agents to engage in multiple conversations that follow the same
protocol.

Such an aim can only be realised effectively if a number of features are already
available. These include:

— Protocol definitions understandable by agents: Interaction protocols
must be declared in a language that all agents must be able to understand
and share. This also has the advantage that the protocol definition is sep-
arated from its implementation in the agent, thus providing a programmer
with a greater understanding of the format the communication is expected
to take. ACRE uses an XML representation of a finite state machine for this
purpose. This representation is further discussed in Section 5. The separation
of protocol definitions from agent behaviours also facilitates the development
of external tools to monitor communication between agents.

— Shared ontologies: A shared vocabulary is essential to agents understand-
ing each other’s communications. A shared ontology defines concepts about
which agents need to be capable of reasoning.

— Plan repository: With the two above features in place, an agent may reason
about the sequence of messages being exchanged, as well as the content of
those messages. This reasoning will typically result in an agent deciding to
perform some action as a consequence of receiving certain communications.
In this case, it is useful to have available a shareable repository of plans that
agents may perform so that new capabilities may be learned from others.
Clearly, the use of shared plans will be dependent on the agent programming
language(s) being used.

The presence of these features aid greatly in the realisation of ACRE’s aims.
The principal aims are as follows:

— External Monitoring of Interaction Protocols: At its simplest level,
conversation matching and recognition of interaction protocols allows for a
relatively simple tool operating externally to any of the agents. This can
intercept and read messages at the middleware level and is suitable for an
open MAS in which agents communicate via FIPA ACL. This is a useful
tool for debugging purposes, allowing developers to monitor communication
to ensure that agents are following protocols correctly. This is particularly
important where conversation management has been implemented in an ad-
hoc way, with incoming and outgoing messages being treated independently

and without a strong notion of conversations. In this case, the protocol def-
initions can be formalised after the implementation of the agents without
interfering with the agent code itself until errors are identified.

— Internal Conversation Reasoning: On receipt of a FIPA ACL message,

it should be possible for an agent to identify the protocol being followed by
means of the protocol parameter defined in the message (for the specifica-
tion of the parameters available in a FIPA ACL message see [15]). Similarly,
the initiator of a conversation should also set the conversation-id param-
eter, which is a unique identifier for a conversation. By referring to the the
protocol identifier, an agent can make decisions about its response by con-
sulting the protocol specification. Similarly, the conversation identifier may
be matched against the stored history of ongoing conversations.
ACRE provides an agent with access to information about the conversations
to which it is a party. This allows the agent to reason about this according to
the capabilities of the agent programming language being used. One example
of this is the use of this information to analyse the status of conversations
and generate appropriate goals for the agent to successfully continue the
conversation along the appropriate lines for the protocol that is specified.
This has previously been done with the AFAPL2 agent programming lan-
guage [16], following the use of goals in [17]. Goals represent the motivations
of the participants in a conversation. Thus the agents’ engagement in a par-
ticular conversation is decoupled from the individual messages that are being
exchanged, allowing greater flexibility in reasoning about their reactions and
responses.

— Organisation of Incoming Messages: It is possible that an agent com-

municating with agents in another system may receive messages that do not
specify their protocol and/or conversation identifier. In this case, it is useful
for the agent to have access to definitions of the protocols in which it is
capable of engaging so as to match these with incoming messages so as to
categorise the messages.
In this situation, message fields such as the sender, receiver, message content
and performative can be compared against currently active conversations to
ascertain if it matches the expectations of the next step of the underlying
protocol.

— Agent Code Verification: The ultimate aim of ACRE is to facilitate the
verification of certain aspects of agent code. In particular, given integration
of conversation reasoning into a programming language, it should be possible
to verify whether or not an agent is capable of engaging in a conversation
following a particular protocol.

4 Conversation Management

ACRE models protocols as FSMs, with the transitions between states triggered
by the exchange of messages between agents participating in the conversation.
Messages, protocols and conversations are represented by tuples. As a FSM,

each protocol is made up of states and transitions, which are also represented by
tuples. This section presents these representations and also provides an informal
description of the conversation management algorithm used within ACRE.

A message is represented by the tuple (s,7,¢, ¢, p, x), where s is the agent
identifier of the message’s sender, r is the agent identifier of the recipient, c is the

conversation identifier, ¢ identifies the protocol, p is the message performative
and z is the message content.

Each protocol is represented by a tuple (¢, S, T, i, F') where ¢ is the protocol’s
unique identifier, S and T are sets of states and transitions respectively, i is the
name of the initial state and F is a set of names of final (terminal) states.

Within these conversations, each state is represented by the tuple (n, s, @)
where n is the name of the state, s is the status of the state (whether it is a
start, end or intermediate state) and ¢ is the identifier of the protocol it belongs
to. A transition is represented by (o,€,s,r,p,x). Here, o and e are the names
of the start and end states respectively, s and r are the agent identifiers of the
sending and receiving agents respectively, p is the performative of the message
triggering the transition and x is the message content.

As a FSM, a protocol can easily visualised as shown in Figure 1. This figure
shows a FSM for a simple, one-shot Vickrey-style auction. It shows the states and
transitions associated with this protocol. Transitions are triggered by comparison
with messages exchanged between the participating agents.

performative: reject-proposal
sender: Zinitiator
receiver: ?bidder
performative: propose content: bid(?item,?amount) rejected
sender: ?bidder
performative: cfp receiver: ?initiator

- bid(?if ?. .
sender: Zinitiator content: bid(?item,?amount) performative: accept-proposal
receiver: ?bidder sender: ?initiator
content: bidfor(?item) receiver: ?bidder

content: bid(?item,?amount)

performative: propose
sender: ?bidder
receiver: ?initiator
content: nobid(?item)

awaiting_bid

accepted

Fig. 1. FSM representation of the Vickrey Auction protocol

Finally, a conversation may be represented by (¢, A, s, c, B,1) where ¢ is
the protocol identifier, A is the set of participating agents, s is the name of the
conversation’s current state, c is the conversation identifier, B is the current set

of variable/value bindings and v is the conversation status (active, completed
or failed).

The values permitted in the tuples shown here are based on first-order logic,
meaning that all values are constants, variables or functions. When considering
whether a message is capable of advancing a conversation, its fields are compared
with the corresponding elements of the conversation’s available transitions.

When comparing values, the following rules apply:

— Constant values match against other identical constant values (e.g. in Fig-
ure 1, the first transition can only be triggered by a message with the per-
formative cfp).

— Variables match against any value.

— Functions match other functions that have the same functor, have the same
number of arguments and whose arguments in turn match.

In the pseudocode that follows in Figures 2, 3 and 4, this is encapsulated by
the function matches(a,b).

The bindings associated with the conversation (B) is a set of key/value pairs
that binds variables to constants or functions against which that they have been
matched in triggering a transition. Any variables that have been matched against
a constant or function in a triggering message are given a binding that is stored
in B. In the example from Figure 1, the sender of the initial message will have
their agent identifier bound to the ?initiator variable, so any further messages
must be sent by/to that same agent, whenever the ?initiator variable is used.
This is an example of a variable being used in immutable context. Once the
variable has been bound to a value, that value may not change for the duration
of the conversation.

An alternative approach is to use a variable in a mutable context. In this
situation, a variable may acquire a binding to a new value regardless of whether
it has been previously bound. Further explanation (and examples) of the different
variable contexts is presented in Section 5.2. One special-case variable also exists.
The anonymous variable (denoted by “?”) may not acquire any binding. Thus
it acts as a wildcard match that will match against any values.

The following sections outline the three key stages of the conversation man-
agement algorithm. By convention, elements of tuples are denoted by using sub-
scripts (e.g. the initial state (i) of a protocol (p) is shown as p;).

4.1 Identifying Candidate Conversations

The first stage of the conversation management algorithm is carried out whenever
a message is exchanged and is shown in Figure 2. This identifies any active
conversations that may be advanced by a message that has been exchanged. If
the message contains a defined conversation identifier (which are unique), then
only a conversation bearing that identifier may be advanced by the message. In
the event that a message is exchanged without a conversation identifier being
present, any conversation with an available transition that may be triggered by
the message will be considered a candidate.

A conversation can be advanced by a message if the elements of the message
match against the corresponding elements of any available transitions (i.e. that
begin at the current state of the conversation). If the message contains a de-
fined conversation identifier, but that conversation cannot be advanced by the
message, the status of the conversation must be changed to failed.

The apply(B,a) function is used to apply a set of bindings (B) to a term (a).
If a is a variable used in an immutable context for which a binding exists in B,
then the bound value is returned. Otherwise, a is returned unaltered.

C + 0 to store candidate conversations
m <— message sent/received
for each active conversation (c¢) do
if m. = c. or m. = 1 then
for each transition (t) where ¢, = ¢; do
if matches(ms, apply(cg,ts)) and matches(m., apply(cs,t,))
and matches(ms, apply(cs, tz)) and matches(my,t,) then
Add cto C
end if
end for
end if
if m¢=c. and ¢ ¢ C then
¢y failed
end if
end for

Fig. 2. Identifying candidate conversations

4.2 Identifying Candidates for New Conversations

If no active conversations may be advanced by the given message, the second
stage is to identify whether the message is capable of initiating a conversation
using a known protocol. This procedure is shown in Figure 3.

if |C| = 0 then
for each protocol (p) do
if mg = py or my = L then
for each transition (¢) where t, = p; do
if matches(ms,ts) and matches(m,,t,) and matches(mg,t;) then
if m. = L then
Add (pg, {ms, m+}, pi, nextid(), 0, active) to C
else
Add (pg, {ms, mr}, pi,me, 0, active) to C
end if
end if
end for
end if
end for
end if

Fig. 3. Identifying candidate protocols for new conversations

If the message contains a protocol identifier, then only the protocol with
that identifier is considered. Otherwise, the message is compared against the
initial transition of each available protocol. On finding a suitable protocol, a
new conversation is created and added to the set of candidate conversations (C).
If the message contained a conversation identifier, this is used as the identifier

for the new conversation. Otherwise, a new unique conversation identifier is
generated (by means of the nextid () function).

4.3 Advancing the Conversation

Having identified conversations that match against the given message, the system
must advance a conversation, as appropriate. This is shown in Figure 4. At this
stage, events are raised to the agent layer to inform the agent of the outcome
of the process. If the message was not capable of advancing or initiating any
conversation, an “unmatched” event is raised. If there were multiple candidate
conversations (which cannot be the case if conversation identifiers are defined
for all messages), an “ambiguous” event is raised.

If one candidate conversation was identified, this is advanced to the next
appropriate state. Its bindings must be updated (using the getBindings(m,t)
function) to include bindings for variables in the transition that were matched
against values in the message. The anonymous variable may not acquire a bind-
ing. This function does not discriminate between variables based on the context
in which they are used. Both mutable and unbound immutable variables are free
to acquire new bindings. If an immutable context variable has previously been
bound to a value, it is this value that is used in matching the message to the
transition (by means of the apply(B,a) function shown in Figure 2). As the
message content is frequently a function of first order logic, any variables within
that function that match against corresponding parts of the message content
will also acquire bindings in the same way as standalone variables.

if |C| =1 then
¢ < the matched conversation in C'
t < the transition matched by the message m
Cs < te
cg « cp U getBindings(m,t)
if ¢, is an end state then
¢y < completed
raiseEvent(completed, c)
else
raiseBvent(advanced, c)
end if
else if |C| = 0 then
raiseEvent(unmatched, m)
else
raiseEvent(ambiguous, m)
end if

Fig. 4. Advancing the conversation

5 The ACRE XML Format

In ACRE, interaction protocols are modelled using an XML file that follows the
ACRE XML protocol schema definition !. A sample of an XML representation
of a Vickrey Auction Interaction Protocol is given in Figure 5 (this is the same
protocol as the FSM in Figure 1). Each protocol is identified by a name, a name
and a version number (contained in the <namespace>, <name> and <version>
tags respectively). The version number is intended to prevent multiple agents
attempting to communicate using different protocol implementations (e.g. if an
error is discovered in an earlier attempt at modelling a particular protocol). The
use of a namespace helps to avoid conflicts whereby various developers implement
different models of similar protocols using the same name.

Each protocol is represented by a number of states and transitions, defined us-
ing <state> and <transition> tags respectively. Each state has only a “name”
attribute, so that it can be referred to in the transitions. The type of state each
represents (i.e. terminal, initial or other) can be found on the fly when the pro-
tocol is loaded. A state at which no transition ends is considered a start state.
States at which no transitions begin are terminal states. The reason these are
not expressly marked in the protocol definition is because of the ability to import
other protocols, which is discussed in Section 5.1.

Transitions are more complex, as these are required to match messages so
as to trigger a change in the state of a conversation. Each <transition> tag
contains up to six attributes, many of which attempt to match against one field
of a FIPA message. The attributes in this file correspond with the values in
the tuple representing a transition in Section 4. In addition to these message
fields, the ACRE conversation manager will also examine the protocol-id and
conversation-id fields to match messages to particular conversations.

The attributes allowable in a <transition> tag are as follows:

— Performative: This is a mandatory field that specifies the performative
that a message must have in order to trigger this transition. The attribute
value must be exactly equal to the performative contained in the message
for this transition to be triggered. Variables are not permitted in this field.

— From State: Another mandatory field, this indicates the state from which

this transition may be triggered. If the conversation is in another state then
this rule cannot match. In the majority of cases, the attribute value must
be the same as the name of a state that is contained either in the protocol
itself or in an imported protocol.
In addition to exact state names, regular expression matching is also permit-
ted. If a regular expression is provided (indicated by beginning and ending
the value with a forward slash), then this transition will be triggerable from
any state that matches this regular expression. In practice, the protocol in-
terpreter will duplicate this transition for each state name that matches,
thus fitting with the model outlined in Section 4.

! http://acre.lill.is/protocol.xsd

— To State: This is another mandatory field and is used to indicate the state
that the conversation will be in upon successful triggering of this transition.
As with the “From State” attribute, this should match the name of a state
that is either part of the protocol or is imported. However, it may not contain
a regular expression, as the conversation state after the sending of a message
must be clearly defined.

— Sender: This indicates which agent should be the sender of the message.
Although it is allowable to use a constant value for this attribute, this is
unusual as it specifically restricts the protocol to an agent with a a particular
identifier. Generally, this will use a variable to refer to particular agents.
The same variable may be used throughout the protocol to indicate that
particular messages should be sent by the same agent, as it will have acquired
a bound value the first time it matches against an agent identifier.

— Receiver: This attribute functions in a similar way to “Sender”, with the
exception that it is the recipient of the message that is being matched.

— Content: This attribute relates to the actual content of the message. It
may be a constant, a variable or a function that possibly combines the two.
Figure 5 illustrates the use of a function in the content field in each of the
transitions.

The “Sender”, “Receiver” and “Content” attributes are optional in a protocol
definition. In each case, the default value if one is not supplied is the anonymous
“?” variable that matches any value.

5.1 Importing Protocols

One other feature of the ACRE XML format is the ability to import from other
protocols. When this occurs, all of the states and transitions from the imported
protocol are added to those of the protocol containing the <import> tag. This
means that transitions in a protocol may refer to states that are not in the
protocol itself but rather are in the imported protocol.

One example of a use for this is the “Cancel” meta-protocol that is included
in all of the standard FIPA Interaction Protocols. This protocol always works in
an identical way, regardless of what the main protocol being followed is: at any
non-terminal stage of the conversation, the initiator of the original conversation
may terminate the interaction by means of a cancel message. This meta-protocol
can be extracted into a separate ACRE protocol that is imported by all other
protocols that support it.

5.2 Variable Bindings

As mentioned in Section 4, the definition of protocols in ACRE allows the use
of three types of variable. The anonymous variable “?” is an unnamed variable
that is capable of matching against any value. As such, it can be considered to
be a wildcard match. A transition whose content attribute is set to “?” can

<?7xml version="1.0"7>

<protocol xmlns="http://acre.lill.is"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://acre.1lill.is http://acre.lill.is/proto

<namespace>is.lill.acre</name>
<name>acre-vickreyauction</name>
<version>0.1</version>

<states>

<state name="start"/>

<state name="awaiting_bid" />
<state name="bid" />

<state name="nobid"/>

<state name="accepted"/>
<state name="rejected"/>

</states>

<transitions>
<transition

<transition

<transition

<transition

<transition

</transitions>
</protocol>

performative="cfp"
from-state="start"
to-state="awaiting_bid"
sender="7initiator"
receiver="7bidder"
content="bidfor(?item)" />
performative="propose"
from-state="awaiting_bid"
to-state="bid"

sender="7bidder"
receiver="7initiator"
content="bid(?item, 7amount)" />
performative="propose"
from-state="awaiting_bid"
to-state="nobid"
sender="7bidder"
receiver="7initiator"
content="nobid(?item)" />
performative="accept-proposal"
from-state="bid"
to-state="accepted"
sender="7initiator"
receiver="7bidder"
content="bid(?item, 7amount)" />
performative="reject-proposal"
from-state="bid"
to-state="accepted"
sender="7initiator"
receiver="7bidder"
content="bid(?item, 7amount)" />

.xsd">

Fig. 5. ACRE XML Representation of the Vickrey Auction Protocol

be triggered by a message with any content (assuming the other fields in the
message match the specified transition).

Two types of named variable are permitted: immutable named variables,
which have ”?” as a prefix followed by the variable name (e.g. ?item) and mu-
table named variables that are prefixed with “??” (e.g. ??7amount).

Each named variable is in scope for the duration of a conversation and is
associated with values as it is matched against the actual fields in messages that
trigger transitions. Whenever a named variable is used in an immutable context,
it may match any content if has not already acquired a value. However, once it
has been matched to a value, it may only match that value for the duration of
the conversation. For example, Figure 5 uses 7initiator to denote the agent
that begins the Vickrey Auction with the sending of the initial call for proposals.
Initially this variable does not have a value associated with it, so it may match
the name of the relevant agent (e.g. “agent1”). However, once this has been done,
the variable 7initiator may only match the value “agentl” for the remainder
of the conversation.

In some situations it is desirable to have variables whose values may change as
the conversation progresses. For that reason, mutable named variables are also
facilitated. The difference between a mutable and immutable named variable
is that a mutable named variable can match against any content, regardless
of whether it previously has a value associated with it. When this occurs, the
existing value is overwritten with the new value that has been matched.

The motivation behind the use of mutable variables can be seen by exam-
ining the Vickrey Auction protocol shown above. This is a one-shot auction, so
immutable variables are sufficient. However, implementing an iterated auction
is made far more complex if all variables are immutable. The second transi-
tion shown in Figure 5 would be unsuitable for this, as the ?amount variable
is restricted to match only whatever the first value it is matched against. By
changing the content field of this transition to bid(?item,??amount), the vari-
able relating to the amount is used in mutable context and so its value may
change (although the item being bid for must remain the same). Thus each time
this transition is triggered, the amount variable acquires a new value: namely
the amount of the latest bid that was submitted. This can later be referred to
using texttt?amount by the other agent that wishes to accept or reject the bid.
A similar usage can be seen in the example presented in Section 6.

6 ACRE Conversation Example

This section presents an example of how an ACRE conversation may progress.
The example is based on the “Process Documents” protocol shown in Figure 6.
This protocol is designed for a system where text documents must undergo some
form of processing. The Initiator of the protocol is capable of performing this
processing, though it must be made aware of which documents to work on by
the Respondent.

Process Documents,
— X

| |
7 | performative: inform
| sander: ?initiatar

receiver: 7respondent
inform: ready content; ready
T //""\
| . h
| | waiting |
= 'A\ /\
request: process(??doclD) f/ T
/ performative: request parformativa: inform
If sender: Traspondent sender: Tinitiator
| receiver 7initiator | recelver ?respondent
. . ', contant: process(?idocid)/ content: processed| ?docid)
inform: processed(?docid) \/ /

T —"«\<

Requested |
ﬂ\ I

__7 _//

parformative: refuse
sender: Zinitiator

recaiver: Traspondent

content; process|Pelocid)

rocess(?doci

. .
w AN
Il Ena

N

Fig. 6. Process Documents Protocol

Initially, the Initiator informs the Respondent that it is ready to process doc-
uments, to which the Respondent replies with a request to process a particular
document. The Initiator may either process the document and inform the Re-
spondent of this, or refuse to carry out this processing. In the former case, the
Respondent will send the next document for processing and continue to do this
until the Initiator eventually refuses.

Here, the Agent UML description shown to the left of Figure 6 is converted
to the FSM shown on the right. The dashed line surrounding the “Start” state
indicate that this is the current state initially.

The first transition contains constant values for both the performative and
the content. This means that any message matching that transition must have
those exact values in those fields. The message sender and receiver are variables,
and since there are not yet any bindings associated with the conversation, these
will match any agent identifiers in those fields in the message.

A message that will trigger this initial transition may look as follows (some
unimportant fields have been omitted for clarity):

(inform
:sender processor
:receiver manager
:content ready

This results in the state of the conversation changing to “Waiting”, as shown
in Figure 7. Because the 7initiator and ?respondent matched against the

performative: inform
sender: ?initiator

receiver: ?respondent

content: ready

performative: inform
sender: ?initiator

receiver: ?respondent

cohtent: ready

Waiting \
1 ?initiator=processor, 1
?respondent=manager !

performative: request
sender: <manager> sender: <processor>
receiver: <processor> receiver: <manager>
content: process(??docid) / content: processed(<docl23>)

performative: inform

performative: request
sender: <manager>
receiver: <processor>

performative: inform

sender: <processor> b ~
; .

receiver: <manager> ’

| Requested \
?initiator=processor,
?respondent=manager !
' ?docid=docl23 !
Requested

performative: refuse
sender: <processor>
receiver: <manager>
process(?docid)

performative: refuse
sender: <processor>
receiver: <manager>
process(<docl23>)

Fig. 7. Process Documents protocol in the Fig. 8. Process Documents protocol in the
“Waiting” state “Requested” state

constants “processor” and “manager” respectively in the message, these bindings
are associated with the conversation. As these variables are used in immutable
context throughout, they must match their exact bound values for the remainder
of the conversation. This is indicated in Figure 7 by replacing the variables with

these values. Angle brackets have been placed around each of the replacement
values in order to emphasise this.

The transition from the “Waiting” state can now only be triggered by a
message sent by the manager agent to the processor agent with the “request”
performative. The content must also match the transition, though with the use of
the ?7docid variable, there is some flexibility in the values that can be matched.

In the next stage, the manager asks the processor to process the document
with the identifier “doc123”. This is done by means of the following message:

(request
:sender manager
:receiver processor
:content process(doc123)

As this message matches the transition, the conversation moves from the
“Waiting” state to the “Requested” state, as shown in Figure 8.

performative: inform
sender: ?initiator

receiver: ?respondent

content: ready

performative: inform
sender: ?initiator

receiver: ?respondent

content: ready

| Waiting v
?initiator=processor,
\ ?respondent=manager !
' ?docid=docl23 ' performative: request
sender: <manager> sender: <processor>
receiver: <processor> receiver: <manager>
content: process(??docid)/content: processed(<docl24>)

performative: inform

performative: request

S N
performative: inform e N
N
sender: <manager> sender: <processor> J \
receiver: <processor> receiver: <manager> / “
content: process(??docid) /content: processed(<docl23>) ! Requested \

?initiator=processor,
'. ?respondent=manager !
v ?docid=docl24 !
Requested

performative: refuse
sender: <processor>
receiver: <manager>
process(<docl23>)

performative: refuse
sender: <processor>
receiver: <manager>
process(<docl24>)

Fig. 9. Process Documents protocol in the Fig.10. Process Documents protocol in
“Waiting” state for the second time. the “Requested” state for the second time.

At this point, the ?docid variable has also acquired a binding, so this is re-
placed in all transitions using it in an immutable context. Again, this is indicated
by the value being contained within angle brackets in Figure 8. At this point,
the processor agent must either inform the manager that document “doc123”
has been processed (thus returning the conversation to the “Waiting” state) or
refusing to process that document. In each case, it is only the document identifier
that has previously been bound to the ?docid variable that may be used. Re-
fusing to process a different document identifier would result in the conversation
failing as the message could not match an available transition.

If the processor agrees to process the document and informs the manager
of its completion, the conversation returns to the “Waiting” state, as shown in
Figure 9. Unlike the first time the conversation was in this state, this time the
?docid variable has got a binding associated with it. However, the transition
between “Waiting” and “Requested” uses this variable in a mutable context,
meaning that it can match against any value contained in the next message.
Thus the manager can ask the processor to process any document it wishes.
In contrast, as noted previously, when moving from the “Requested” state, the
processor is restricted to only discussing the identifier of the last document it
was asked to process.

If the manager requests that the processor processes document “doc124”, the
conversation returns to the “Requested” state, as shown in Figure 10. The?docid
variable has now acquired an updated binding that is now applied to all the tran-
sitions using that variable in an immutable context. At this stage, the processor
agent may repeat the cycle by processing the document and informing the man-
ager of this, or it may end the conversation by refusing to perform the processing,
thus entering the “End” state.

7 Language Integration in Agent Factory

Agent Factory is an extensible, modular and open framework for the develop-
ment of multi agent systems [2]. It supports a number of agent programming
languages, including AFAPL/ALPHA [18,19], AFAPL2 [20], AF-TeleoReactive
(based on [21]) and AF-AgentSpeak (an implementation of AgentSpeak(L) [8]).
The specific use of ACRE from within AFAPL2 agents has been discussed in a
previous paper [16].

Agent Factory’s implementation of these agent programming languages are
based on its Common Language Framework (CLF) whereby the way in which
sensors, actions and modules are implemented have been standardised across the
various languages. This greatly facilitates the integration of additional services
into each language, as the core components will be shared. This is the case for
ACRE, where minimal effort is required to add support for further languages
once one integration has been completed.

The ACRE Architecture consists of a number of components, some of which
are platform-independent and some of which require some work to be ported to
other platforms and agent programming languages.

7.1 Protocol Manager

The Protocol Manager (PM) is a platform-independent component that is tasked
with making protocols available to agents. When an agent identifies the URL
of an ACRE protocol definition it will send this to the PM, which will load
the protocol, verify it against the appropriate schema and make it available for
interested agents to use. It is also capable of accessing online ACRE reposito-
ries that may contain multiple protocol definitions in a centralised location. A
repository definition file lists the protocols that it has available. Typically, one
PM will exist on an agent platform, so any protocol located by any agent will
be shared amongst all agents on the platform (within Agent Factory, the PM is
a shared Platform Service). However, there is no technical barrier to individual
agents having their own PMs if desired. Previously loaded protocols are also
stored locally so that they can be recovered in the event of a platform failure or
restart.

7.2 Conversation Manager

Whereas the PM is shared amongst agents, each agent has its own Conversation
Manager (CM), which is used to keep track of the conversations the agent is
involved in. The CM monitors both incoming and outgoing communication and
matches each message to an appropriate conversation, following the algorithm
outlined in Section 4. By monitoring the CM, an agent can gain data that can
be used to reason about ongoing conversations and the messages it sends and
receives. The CM is also platform-independent.

7.3 Agent/ACRE Interface

The Agent/ACRE Interface (AAI) is specific to the platform and agent pro-
gramming language being used. This is designed to facilitate the interaction
between the agents and the ACRE components mentioned above. The AAT has
two distinct principal roles:

— To enable an agent to inform the PM and CM of information it holds.
— To provide the agent with information about the status and activity of the
CM and PM.

In the former case, an agent must be capable of informing the PM of the
location of any protocols that it wishes to use. This information may originally
come from another agent with which it wishes to communicate. The CM requires
access to the inbox and outbox of the agent also, so the AAI must provide this
service also.

The key role of the AAI is making information about its own communication
available to agents. Within Agent Factory, this is done in two complementary
ways: knowledge sensors and event sensors.

A knowledge sensor is a sensor that runs on each interpreter cycle of the
agent, and provides information on the current state of conversations and pro-
tocols. This information currently consists of:

— What protocols are already loaded (PM).

For each conversation in which the agent is a participant:

The protocol each conversation is following (CM)

— The identity of the other participating agent in each conversation (CM)
— The current state of each conversation (CM)

The current status of each conversation (CM)

In addition to these, event sensors inform the agent whenever events are
raised by the PM or the CM. Events currently handled include:

— A new protocol has been loaded (PM)

— A new conversation has begun (CM)

— A conversation has advanced (CM)

— A conversation has ended (CM)

— An error has occurred in a conversation (CM)

In addition to the basic role of information passing, an AAI may augment the
capabilities of a language by leveraging the data available from the CM or the
PM. For instance, the AAI built for the Agent Factory CLF provides an action
of the form advance(conversation-id,performative,content) whereby an
agent can advance a specific conversation while providing minimal information.
The details about the other participating agent (including its address) are taken
from the CM, along with the protocol identifier and content language. Further
features in this vein are left for future work.

8 Conclusions and Future Work

This paper presents an outline of the ACRE conversation reasoning system, how
it models protocols and conversations, and how it is integrated into the Agent
Factory multi agent framework. Although currently only used with Agent Fac-
tory, it is intended that ACRE will be used in conjunction with several other
agent programming frameworks and the languages they support. ACRE has
been designed to be as language-independent and platform-independent as pos-
sible. Despite this, it will be necessary to adapt the system to frameworks and
languages other than Agent Factory and the agent programming languages it
supports.

Aside from the integration of ACRE into other platforms, future focus will
be on the reasoning about conversations at the agent deliberative level and the
information that ACRE will need to provide in order to facilitate this. One are
of focus will be to allow the grouping of conversations into related groups. As
ACRE protocols are limited to two participants, it is necessary to allow agents
to relate conversations to each other. One such example will be in a situation
where an agent is conducting an auction and has issued a call for proposals
to multiple agents. At present, each of these initiates a separate conversation
that must be managed by the agent using its own existing capabilities. However,
grouping conversations at the Conversation Manager level would allow events to

be raised to inform the agent that all conversations in the group had reached
the state where a proposal had been received, or left the state where a proposal
had been solicited. The key point is the provision of sufficient information for
agents to use their deliberative reasoning capabilities in conjunction with the
information emanating from the Conversation and Protocol Managers.

In addition, it is intended to explore the ways in which having access to an
ACRE layer will add to the native messaging capabilities of other programming
languages. This includes the ability to directly advance a conversation, as alluded
to in Section 7, as well as specifically initiating conversations (rather than relying
on message matching on the part of the Conversation Manager). The possibilities
are likely to vary with different agent programming languages and it is intended
to add these features as appropriate.

The availability of cross-platform communication tools such as ACRE can
only aid interoperability between distinct agent platforms, toolkits and program-
ming languages.

References

1. Labrou, Y.: Standardizing agent communication. Multi-Agents Systems and Ap-
plications (Advanced Course on Artificial Intelligence) (2001) 74-97

2. Collier, R.W., O’'Hare, G.M.P., Lowen, T., Rooney, C.: Beyond Prototyping in the
Factory of Agents. In: Multi-Agent Systems and Application III: 3rd International
Central and Eastern European Conference on Multi-Agent Systems (CEEMAS
2003), Prague, Czech Republic (2003)

3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Com-
munication Language. In: Proceedings of the Third International Conference on
Information and Knowledge Management, Gaithersburg, MD (1994) 456-463

4. Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS Agent Platform: Open Source
for Open Standards. In: Proceedings of the 5th International Conference and
Exhibition on the Practical Application of Intelligent Agents and Multi-Agents
(PAAM2000), Manchester (2000) 368

5. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library
Specification (2002)

6. Foundation for Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification (2000)

7. Bellifemine, F., Caire, G., Trucco, T., Rimass, G.: Jade Programmer’s Guide (2007)

8. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. Wiley-Interscience (2007)

9. Collier, R.W., Ross, R., O’Hare, G.M.P.: A Role-Based Approach to Reuse in
Agent-Oriented Programming. In: AAAI Fall Symposium on Roles, an Interdisci-
plinary Perspective (Roles 2005), Arlington, VA, USA (2005)

10. Barbuceanu, M., Fox, M.S.: COOL: A language for describing coordination in
multi agent systems. In: Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95). (1995) 17-24

11. Cost, R.S., Finin, T., Labrou, Y., Luan, X., Peng, Y., Soboroff, 1., Mayfield, J.,
Boughannam, A.: Jackal: a Java-based Tool for Agent Development. In: Working
Papers of the AAAI-98 Workshop on Software Tools for Developing Agents, AAAI
Press (1998)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: Toward an
industrial-strength open agent architecture. Software Agents (1997) 375-418
Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Modeling agent conversations
with colored petri nets. In: In: Workshop on Specifying and Implementing Con-
versation Policies, Third International Conference on Autonomous Agents (Agents
’99), Seattle. (1999) 59-66

Parunak, H.: Visualizing Agent Conversations: Using Enhanced Dooley Graphs for
Agent Design and Analysis. In: Proceedings of the Second International Conference
on Multi-Agent Systems (ICMAS). (1996)

Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation (2002)

Lillis, D., Collier, R.W.: ACRE: Agent Communication Reasoning Engine. In: 3rd
International Workshop on LAnguages, Methodologies and Development Tools for
Multi Agent SystemS (LADS’010), Lyon (2010)

Braubach, L., Pokahr, A.: Goal-Oriented Interaction Protocols. In: MATES ’07:
Proceedings of the 5th German Conference on Multiagent System Technologies.
Volume 4687., Leipzig, Germany, Springer (2007) 85-97

Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. Phd thesis, University College Dublin (2001)

Collier, R.W., Ross, R., O’'Hare, G.M.P.: Realising Reusable Agent Behaviours
with ALPHA. In: Proceedings of the 3rd German Conference on Multi-Agent
System Technologies (MATES 05), Koblenz, Germany (2005) 210-215

Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: 6. In: Towards Per-
vasive Intelligence: Reflections on the Evolution of the Agent Factory Framework.
Springer US, Boston, MA (2009) 187-212

Nilsson, N.J.: Teleo-Reactive Programs for Agent Control. Journal of Artificial
Intelligence Research 1 (1994) 139-158

