
Internalising Interaction Protocols
as First-Class Programming

Elements in Multi Agent Systems

by

David J. Lillis, B.A., H.Dip., M.Sc.

The thesis is submitted to
University College Dublin

for the degree of Doctor of Philosophy
in the

College of Science

October 2012

School of Computer Science and Informatics

Mr. John Dunnion (Head of School)

Under the supervision of

Dr. Rem W. Collier
Mr. John Dunnion

CONTENTS

Abstract xi

Acknowledgements xiv

List of Publications xvi

1 Introduction 1
1.1 The Position of Multi Agent Systems 2
1.2 Conversation Management for Multi Agent Systems 4
1.3 Motivations . 5
1.4 Core Contributions . 7
1.5 Thesis Outline . 8

I Background 11

2 Agent Oriented Programming 12
2.1 Introduction . 12
2.2 What is an “agent”? . 13

2.2.1 Autonomy . 14
2.2.2 Social Ability/Interoperability 14
2.2.3 Perception and Environment 15
2.2.4 Proactivity and Reactivity 15
2.2.5 Benevolence . 15
2.2.6 Mobility . 16
2.2.7 Other Properties . 16
2.2.8 Adopting a Definition 17

2.3 Agent Oriented Programming 18
2.4 AOP Frameworks and Languages 19

2.4.1 AgentSpeak(L) and Jason 23
2.4.2 Agent Factory . 25
2.4.3 GOAL . 28
2.4.4 JADE and Jadex . 30
2.4.5 2APL . 34

2.5 Summary . 38

i

3 Agent Communication 39
3.1 Introduction . 39
3.2 Standalone Agent Communication 39

3.2.1 Speech Act Theory . 40
3.2.2 Criticisms of ACLs . 45
3.2.3 Social Semantics . 46

3.3 Conversation Models . 47
3.3.1 Finite State Machines . 48
3.3.2 Coloured Petri Nets . 56
3.3.3 Agent UML . 57
3.3.4 Dooley Graphs . 58
3.3.5 Global Session Types . 59
3.3.6 State Charts . 60
3.3.7 Commitment Machines 61
3.3.8 Interaction based on Expectations 62
3.3.9 Mental Models . 63

3.4 Implementations . 64
3.4.1 FIPA ACL . 64
3.4.2 KQML . 65
3.4.3 Custom . 65

3.5 Summary . 66

4 FIPA Communication Standards 67
4.1 Introduction . 67
4.2 FIPA ACL Message Structure . 67
4.3 FIPA ACL Standard Performatives 69
4.4 FIPA Interaction Protocol Specifications 74

4.4.1 Common Elements . 74
4.4.2 Bipartite Protocols . 75
4.4.3 Group Protocols . 78
4.4.4 Macro Protocols . 80
4.4.5 Experimental Standards 81
4.4.6 Others . 82
4.4.7 Problems with FIPA Interaction Protocols 83

4.5 Summary . 84

II ACRE: Agent Conversation Reasoning Engine 85

5 Introduction to ACRE 86
5.1 Introduction . 86
5.2 Aims and Features . 87
5.3 Definitions . 89
5.4 Interaction Protocols as Finite State Machines 90

5.4.1 States . 91
5.4.2 Transitions . 91

5.5 Content Language . 92

ii

5.5.1 Mutable and Immutable Context for Variables 93
5.5.2 Anonymous Variable . 94

5.6 Conversation Handling . 94
5.6.1 Identifying Candidate Conversations 97
5.6.2 Identifying Candidates for New Conversations 99
5.6.3 Advancing the Conversation 99

5.7 Limitations . 101
5.7.1 Ordering of Actions . 101
5.7.2 Synchronisation . 102
5.7.3 Two Participants in Each Conversation 105
5.7.4 Counting Iterations . 106

5.8 ACRE Protocol Examples . 106
5.8.1 Basic Variable Use: The Request/Response Protocol . . 106
5.8.2 Anonymous Variables: The Status Report Protocol . . . 109
5.8.3 Rebinding Variables: Process Documents Example . . . 113

5.9 Exceptions to Interaction Protocol Flow 121
5.9.1 Intentional Termination 121
5.9.2 Timeouts . 122
5.9.3 Inadvertent Termination 123

5.10 Comparison with Related Systems 124
5.10.1 Other Finite State Machine Representations 124
5.10.2 Global Session Types . 126
5.10.3 Coloured Petri Nets . 127
5.10.4 Approaches based on Semantics 127

5.11 Summary . 128

6 ACRE Formal Model 129
6.1 Introduction . 129
6.2 Assumptions of the Model . 129
6.3 Notation . 130

6.3.1 Use of Ellipses . 131
6.4 Language . 132

6.4.1 Grounded Language . 132
6.5 Entities . 133

6.5.1 Bindings . 133
6.5.2 Performative . 134
6.5.3 Message . 135
6.5.4 State . 135
6.5.5 Transition . 136
6.5.6 Protocol . 137
6.5.7 Conversation . 138
6.5.8 Event . 138
6.5.9 Conversation Manager 139

6.6 Predicates . 140
6.6.1 Matching . 140
6.6.2 Triggers . 142
6.6.3 Initiates . 143

iii

6.6.4 Advances . 144
6.7 Functions . 145

6.7.1 Head . 145
6.7.2 Tail . 145
6.7.3 Append . 146
6.7.4 New Conversation . 146
6.7.5 Combine . 147
6.7.6 Generating Bindings . 147
6.7.7 Applying Bindings . 150
6.7.8 Advance . 152

6.8 Operational Semantics . 153
6.8.1 Start . 154
6.8.2 Initialise . 155
6.8.3 Match . 155
6.8.4 Fail . 156
6.8.5 New . 157
6.8.6 Update . 158
6.8.7 Done . 160

6.9 Example . 160
6.9.1 Modelling . 160
6.9.2 Start . 162
6.9.3 First Iteration . 163
6.9.4 Second Iteration . 166
6.9.5 Third Iteration . 169
6.9.6 Fourth Iteration . 171
6.9.7 Fifth Iteration . 173

6.10 Summary . 176

7 Generic Architecture 177
7.1 Introduction . 177
7.2 Overview . 178
7.3 External Components . 179

7.3.1 External Protocol Repositories 179
7.4 Platform Level Components . 185

7.4.1 Message Transport Service 186
7.4.2 Protocol Manager . 187
7.4.3 Protocol Store . 188

7.5 Agent Level Components . 188
7.5.1 Agent Inbox . 189
7.5.2 Agent Deliberative Layer 190
7.5.3 Conversation Manager 190
7.5.4 Group Reasoner . 191
7.5.5 ACRE/Agent Interface 195

7.6 Summary . 198

8 Integration with Agent Factory 199
8.1 Introduction . 199

iv

8.2 Agent Factory . 199
8.2.1 Common Language Framework 200

8.3 ACRE in Agent Factory . 201
8.3.1 Platform Services . 202
8.3.2 ACRE/Agent Interface 204
8.3.3 ACRE Group Module . 213

8.4 Implementation of Example Protocols 218
8.4.1 Request/Response Protocol 218
8.4.2 Status Report Protocol 220
8.4.3 Process Documents Protocol 223

8.5 Summary . 225

9 Evaluation 227
9.1 Introduction . 227
9.2 Background . 227
9.3 Scenario Motivations . 228
9.4 Scenario Description . 230
9.5 Undergraduate Experiment . 233

9.5.1 Objective Measures . 235
9.5.2 Subjective Analysis . 237

9.6 Postgraduate Experiment . 243
9.6.1 Objective Analysis . 243
9.6.2 Subjective Analysis . 244

9.7 Wider Applicability of Issues . 247
9.8 Summary . 249

10 Conclusions and Further Work 252
10.1 Introduction . 252
10.2 Further Work . 252
10.3 Conclusions . 254

III Appendices 273

A Agent UML Diagrams for FIPA Interaction Protocols 274

B Schemas for ACRE Repositories 287

C Interaction Protocols for Trading Evaluation Scenario 292
C.1 Agent Trading Game . 292

C.1.1 Protocols . 294
C.1.2 Suggested Strategy . 294

C.2 The Banker Agent . 296
C.2.1 Protocol: trading.bank.open 296
C.2.2 Protocol: trading.bank.enquiry 297

C.3 The StockBroker Agent . 298
C.3.1 Protocol: trading.broker.listing 298
C.3.2 Protocol: trading.broker.price 299

v

C.3.3 Protocol: trading.broker.portfolio 299
C.3.4 Protocol: trading.broker.buy 300
C.3.5 Protocol: trading.broker.sell 301

C.4 The Guru Agent . 304
C.4.1 Protocol: trading.guru.subscribe 304

C.5 The Auctioneer Agent . 306
C.5.1 Protocol: trading.auctioneer.subscribe 306

C.6 The Bidder Agents . 308
C.6.1 Protocol: trading.bidder.sell 308

vi

LIST OF TABLES

2.1 Comparison of Object Oriented Programming (OOP) con-
cepts with Agent Oriented Programming (AOP) (taken
from [150]). 18

3.1 Types of Speech Acts. 41
3.2 ACL Support in AOP . 64

6.1 Initial message matched against available transition in the
new state. 165

6.2 Second message matched against available transition in the
match state. 167

6.3 Second message matched against available transition in the
new state. 168

6.4 Third message matched against available transition in the
match state. 170

6.5 Fourth message matched against available transition in the
match state. 172

6.6 Fourth message matched against available transition in the
new state. 173

6.7 Fifth message matched against available transition in the
match state. 175

9.1 Core Agent Protocols. 231
9.2 Objective measures of programmer effort for Fudan students. 236
9.3 Issues present in Fudan students’ non-ACRE code. 241
9.4 Objective measures of programmer effort for UCD students. 244
9.5 Issues present in UCD students’ non-ACRE code in fixed

time period. 245
9.6 Issues present in UCD students’ non-ACRE code without

time restriction. 246

vii

LIST OF FIGURES

1.1 Gartner’s hype cycle of innovation (taken from [57]). 2

2.1 Sample AgentSpeak(L) code in Jason (taken from [19]). 24
2.2 Agent Factory Architecture . 26
2.3 Agent Factory interpreter cycle (taken from [35]). 27
2.4 Sample GOAL code (taken from [87]) 29
2.5 Jadex execution model (taken from [135]). 32
2.6 The deliberation cycle for 2APL agents (taken from [42]) . . . 37

3.1 Semantics for the KQML tell performative (taken from [103]). 44
3.2 A COOL conversation plan (taken from [9]). 50
3.3 Inheritance in AgentTalk (taken from [100]). 51
3.4 A Jackal conversation template (taken from [41]). 53
3.5 Finite State Machine representing the KQML “ask-one” con-

versation in Jackal (taken from [41]). 53
3.6 FSM describing an InfoSleuth “subscribe” protocol (taken

from [124]). 54
3.7 KAoS conversation policy (taken from [22]). 55
3.8 FSM diagram of a KQML register protocol (taken from [40]). . 57
3.9 CPN diagram of a KQML register protocol (taken from [40]). . 57
3.10 State Chart representation of an agent protocols (taken

from [119]). 60

5.1 FSM representation of the Vickrey Auction protocol. 96
5.2 Identifying candidate conversations. 97
5.3 Identifying candidate protocols for new conversations. 99
5.4 Advancing the conversation. 100
5.5 Procedural description of the mergeBindings function. 101
5.6 Ordering of operations. 102
5.7 English Auction Protocol with Synchronisation Problems. . . 103
5.8 Agent UML representation of Request/Response protocol. . 107
5.9 Request/Response Protocol in the Start state. 107
5.10 Request/Response Protocol in the Requested state. 109
5.11 Request/Response Protocol in the End state. 109
5.12 Agent UML representation of a Status Report protocol. 110

viii

5.13 Status Report Protocol in the Start state. 111
5.14 Status Report Protocol in the Requested state. 112
5.15 Status Report Protocol in the Done state. 112
5.16 Status Report Protocol in the Refused state. 113
5.17 Agent UML representation of a Process Documents protocol. 114
5.18 Process Documents Protocol in the Start state. 115
5.19 Process Documents Protocol in the Waiting state. 117
5.20 Process Documents Protocol in the Requested state. 118
5.21 Process Documents Protocol having returned to the Waiting

state. 119
5.22 Process Documents Protocol having returned to the Requested

state. 120

6.1 Stages in the conversation reasoning process. 154
6.2 Process Documents Protocol. 161

7.1 Generic ACRE Architecture. 178
7.2 Example of a valid repository.xml file. 180
7.3 Example of a valid protocol definition file. 182
7.4 Example of the use of the <import> tag in a protocol defini-

tion. 184
7.5 Finite State Machine illustrating the use of imports in a pro-

tocol definition. 184
7.6 Screenshot of the Protocol Editor. 185
7.7 Platform Level of the Generic ACRE Architecture. 186
7.8 Platform Level of the Generic ACRE Architecture. 189

8.1 ACRE Architecture within Agent Factory. 203
8.2 ACRE-enabled Requester agent for Request/Response Pro-

tocol. 219
8.3 ACRE-enabled Responder agent for Request/Response Pro-

tocol. 219
8.4 ACRE-enabled Requester agent for Status Report Protocol. . 220
8.5 ACRE-enabled Responder agent for Status Report Protocol. . 220
8.6 Non-ACRE Requester agent for Status Report Protocol. . . . 221
8.7 Non-ACRE Responder agent for Status Report Protocol. . . . 221
8.8 Better Non-ACRE Requester agent for Status Report Protocol. 222
8.9 Requester agent for Process Documents Protocol. 224
8.10 Responder agent for Process Documents Protocol. 224

9.1 FSM illustration of the broker.buy protocol. 232
9.2 Sample non-ACRE code. 238
9.3 Issues present in Fudan students’ non-ACRE code. 242
9.4 Issues present in UCD students’ non-ACRE code in fixed

time period. 245
9.5 Issues present in UCD students’ non-ACRE code without

time restriction. 246

ix

9.6 Sample Jason rule forming part of an implementation for
Contract Net protocol. 248

A.1 FIPA Request Interaction Protocol (SC00026). 275
A.2 FIPA Query Interaction Protocol (SC00027). 276
A.3 FIPA Request When Interaction Protocol (SC00028). 277
A.4 FIPA Subscribe Interaction Protocol (SC00035). 278
A.5 FIPA Propose Interaction Protocol (SC00036). 279
A.6 FIPA Contract Net Interaction Protocol (SC00029). 280
A.7 FIPA Iterated Contract Net Interaction Protocol (SC00030). . . 281
A.8 FIPA Brokering Interaction Protocol (SC00033). 282
A.9 FIPA Recruiting Interaction Protocol (SC00034). 283
A.10 FIPA English Auction Interaction Protocol (XC00031). 284
A.11 FIPA Dutch Auction Interaction Protocol (XC00032). 285
A.12 FIPA Cancel Meta Protocol. 286

B.1 XML Schema Document for repository.xml files. 288
B.2 XML Schema Document for protocol declarations. 291

C.1 Finite State Machine representing the “trading.bank.open”
protocol. 296

C.2 Finite State Machine representing the “trad-
ing.bank.enquiry” protocol. 297

C.3 Finite State Machine representing the “trading.broker.listing’
protocol. 298

C.4 Finite State Machine representing the “trading.broker.price”
protocol. 299

C.5 Finite State Machine representing the “trad-
ing.broker.portfolio” protocol. 300

C.6 Finite State Machine representing the “trading.broker.buy”
protocol. 302

C.7 Finite State Machine representing the “trading.broker.sell”
protocol. 303

C.8 Finite State Machine representing the “trad-
ing.guru.subscribe” protocol. 305

C.9 Finite State Machine representing the “trad-
ing.auctioneer.subscribe” protocol. 307

C.10 Finite State Machine representing the “trading.bidder.sell”
protocol. 309

x

ABSTRACT

Since their inception, Multi Agent Systems (MASs) have been championed as
a solution for the increasing problem of software complexity. Communities of
distributed autonomous computing entities that are capable of collaborating,
negotiating and acting to solve complex organisational and system manage-
ment problems are an attractive proposition. Central to this is the requirement
for agents to possess the capability of interacting with one another in a struc-
tured, consistent and organised manner.

This thesis presents the Agent Conversation Reasoning Engine (ACRE), which
constitutes a holistic view of communication management for MASs. ACRE is
intended to facilitate the practical development, debugging and deployment
of communication-heavy MASs.

ACRE has been formally defined in terms of its operational semantics, and a
generic architecture has been proposed to facilitate its integration with a wide
variety of diverse agent development frameworks and Agent Oriented Pro-
gramming (AOP) languages. A concrete implementation has also been de-
veloped that uses the Agent Factory AOP framework as its base. This allows
ACRE to be used with a number of different AOP languages, while providing
a reference implementation that other integrations can be modelled upon. A
standard is also proposed for the modelling and sharing of agent-focused in-
teraction protocols that is independent of the platform within which a concrete
ACRE implementation is run.

Finally, a user evaluation illustrates the benefits of incorporating conversation
management into agent programming.

xi

STATEMENT OF ORIGINAL
AUTHORSHIP

I hereby certify that the submitted work is my own work, was completed while
registered as a candidate for the degree stated on the Title Page, and I have
not obtained a degree elsewhere on the basis of the research presented in this
submitted work.

xii

For Hailey. Making 2012 count.

ACKNOWLEDGEMENTS

This thesis would not have been possible but for the support and encourage-
ment I have received over many years from a number of people. I owe a great
debt of gratitude to my supervisor, Rem Collier. He has been a friend as well as
a mentor, and has involved me in numerous research projects, which provides
me with a strong platform for the rest of my career.

Fergus Toolan is one of the principal reasons why I now work in research. I
am particularly thankful that he took the time to proofread this work in its
entirety. He has been an important source of both guidance and sanity during
my time in UCD.

Howell Jordan was also kind enough to act as a proofreader for this work, and
his input on evaluation methods was invaluable. I am also very grateful that
Howell was willing to present aspects of this work at ProMAS when I was
unable to attend.

Of course, neither education nor living are free. I would like to thank all those
who saw fit to employ me in some capacity during the time this work was
ongoing. This includes Eamonn Nolan and Waseem Akhtar in Griffith College
Dublin; Mark Hargaden in the Geary Institute UCD; Dorothy and Tom Meaney
of Elite Accounting; and Greg O’Hare in the CLARITY centre, UCD.

In particular, I am extremely grateful to John Dunnion and Henry McLough-
lin, who were instrumental in giving me the opportunity to greatly broaden
my horizons by spending a semester lecturing in Fudan University, Shanghai.
Both have also been great sources of advice and guidance throughout my aca-
demic career.

My parents deserve special mention. They have always been great believers
in education and have greatly supported me, from forcing me to complete
primary school homework through to giving me the opportunity to attend
university. They have always encouraged me to achieve my potential and for
that I am very grateful.

Finally, thank you Hailey. It is difficult to imagine having a more support-
ive, patient and loving person by my side throughout this journey and many
journeys to come.

xiv

LIST OF PUBLICATIONS

The following is a list of publications by the author in the area of Multi Agent
Systems. Those publications that are directly relevant to the work in this thesis
are marked with an asterisk.

• David Lillis, Howell R. Jordan, and Rem. W. Collier. Evaluation of a Con-
versation Management Toolkit for Multi Agent Programming. In Proceed-
ings of the 10th International Workshop on Programming Multi-Agent Systems
(ProMAS 2012), Valencia, Spain, 2012.*

• David Lillis and Rem W. Collier. Augmenting Agent Platforms to Facilit-
ate Conversation Reasoning. In M. Dastani, A. E. F. Seghrouchni, J. F. Hub-
ner, and J. Leite, editors, Post-proceedings of the 3rd International Workshop
on LAnguages, methodologies and Development tools for multi-agent systemS,
Lyon, France, 2011. Springer.*

• Dinh Doan Van Bien, David Lillis, and Rem W. Collier. Call Graph Pro-
filing for Multi Agent Systems. In M. Dastani, A. El Fallah Segrouchni, J.
a. Leite, and P. Torroni, editors, Languages, Methodologies, and Development
Tools for Multi-Agent Systems, LADS ’009 Post-Proceedings, pages 153–167.
Springer Berlin / Heidelberg, Sept. 2010.

• Mauro Dragone, Howell R. Jordan, David Lillis, and Rem W. Collier. Sep-
aration of Concerns in Hybrid Component and Agent Systems. Interna-
tional Journal of Communication Networks and Distributed Systems, 2010.

• Howell R. Jordan, Jennifer Treanor, David Lillis, Mauro Dragone, Rem W.
Collier, and G. M. P. O’Hare. AF-ABLE in the Multi Agent Contest 2009.
Annals of Mathematics and Artificial Intelligence, 2010.

• David Lillis and Rem W. Collier. ACRE: Agent Communication Reason-
ing Engine. In 3rd International Workshop on LAnguages, Methodologies and
Development Tools for Multi Agent SystemS (LADS’010), Lyon, 2010.*

• Dinh Doan Van Bien, David Lillis, and Rem W. Collier. Space-Time Dia-
gram Generation for Profiling Multi Agent Systems. In Proceedings of the

xv

7th International Workshop on PROgramming Multi-Agent Systems (PRO-
MAS 2009), held at the 8th International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2009), Budapest, Hungary, May
2009.

• Mauro Dragone, David Lillis, Rem W. Collier, and G. M. P. O’Hare. Prac-
tical Development of Hybrid Intelligent Agent Systems with SoSAA. In
Proceedings of the 20th Irish Conference on Artificial Intelligence and Cognitive
Science, Dublin, Ireland, Aug. 2009.

• Mauro Dragone, David Lillis, Rem W. Collier, and G. M. P. O’Hare.
SoSAA: A Framework for Integrating Agents & Components. In Pro-
ceedings of the 24th Annual Symposium on Applied Computing (ACM SAC
2009), Special Track on Agent-Oriented Programming, Systems, Languages,
and Applications, Honolulu, Hawaii, USA, Mar. 2009.

• Mauro Dragone, G. M. P. O’Hare, David Lillis, and Rem. W. Collier. Hy-
brid Agent & Component-Based Management of Backchannels. In Pro-
ceedings of the 4th International Conference on Software and Data Technologoes
(ICSOFT 2009), Sofia, Bulgaria, July 2009.

• Howell R. Jordan, Jennifer Treanor, David Lillis, Mauro Dragone, Rem
W. Collier, and G. M. P. O’Hare. AF-ABLE: System Description. In Pro-
ceedings of the 10th International Workshop on Computational Logic in Multi-
Agent Systems (CLIMA-X). Clausthal University of Technology, 2009.

• David Lillis, Rem W. Collier, Mauro Dragone, and G. M. P. O’Hare. An
Agent-Based Approach to Component Management. In Proceedings of the
8th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-09), Budapest, Hungary, May 2009.

• Dinh Doan Van Bien, David Lillis, and Rem W. Collier. Call Graph Pro-
filing for Multi Agent Systems. In Proceedings of the Second Multi-Agent
Logics, Languages, and Organisations Federated Workshops (MALLOW 2009),
Turin, 2009.

• Mauro Dragone, David Lillis, Conor Muldoon, Richard Tynan, Rem Col-
lier, and G. M. P. O’Hare. Dublin Bogtrotters: Agent Herders. In Post-
proceedings of the 6th International Workshop on Programming Multi-Agent
Systems (PROMAS 2008), 2008.

• David Lillis, Rem W. Collier, Fergus Toolan, and John Dunnion. Evalu-
ating Communication Strategies in a Multi Agent Information Retrieval
System. In Proceedings of the 18th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2007), pages 81–90, Dublin, Ireland, 2007.

• David Lillis, Rem Collier, Fergus Toolan, and John Dunnion. Evaluating
Communication Strategies in a Multi Agent Information Retrieval Sys-
tem. In Proceedings of the 5th European Workshop on Multi-Agent Systems
(EUMAS’07), Hammamet, Tunisia, Dec. 2007.

xvi

CHAPTER

ONE

Introduction

In recent years, increased globalisation and reliance on technology has driven
the need for complex software applications on an unprecedented scale. Vast
improvements in networking capabilities have resulted in many such sys-
tems becoming increasingly distributed, with initiatives such as Grid Com-
puting [17], Cloud Computing [4] and Software As A Service [157] becoming
commonly used.

Agent Oriented Programming (AOP) is a software development paradigm
with intelligent agents at its core: autonomous computing entities that are
capable of reacting to their environment, exhibiting proactive problem-solving
behaviour and engaging in communication with one another to form Multi
Agent Systems (MASs) [167]. Such MASs are intended to collaboratively solve
large-scale software engineering challenges.

AOP is originally rooted in the work carried out in the Artificial Intelligence
community over a number of decades. With improving computer hardware
resources, research began in the late 1980s to work towards practical deploy-
ments of intelligent agents by providing AOP languages, interpreters, toolkits
and standards [93].

MASs are not solely an academic pursuit, however. Numerous spotlight de-
ployments have been made, in a diverse range of application domains. This
includes building agent-based approaches to supply chain management [137],
simulations in games and films [115] and even space exploration [55]. Addi-
tionally, agents are widely considered to be a key enabling technology for the
next generation of large-scale, self-managing software systems [99, 154, 161].

Despite successes such as these, Object Oriented Programming (OOP) is still
the dominant paradigm in industry, with AOP remaining a niche technology.
The next Section discusses the current position of MASs in terms of its adop-

1

tion thus far. Section 1.2 then concentrates on the issue of the management
of the communication between distributed agents, as this is the core focus of
this thesis. Following this, Section 1.3 outlines the motivations for the work
presented in this thesis. Section 1.4 then presents the principal contributions
this thesis makes to the current state-of-the-art in interaction management for
MASs. Finally, the structure of the remainder of the thesis is set out in Sec-
tion 1.5.

1.1 The Position of Multi Agent Systems

Figure 1.1: Gartner’s hype cycle of innovation (taken from [57]).

Technology research firm Gartner Inc. have identified a pattern amongst many
technological innovations over a long period of time. They describe this as the
“hype cycle of innovation” [57]. This reflects the point from the initial optim-
ism upon the launch of a new innovation, through a decline as companies fail
to make the early gains they anticipated and then a slower rate of adoption as
was originally expected as it reaches maturity. It is illustrated in Figure 1.1.
The stages of this hype cycle are as follows:

Innovation Trigger: A breakthrough piques interest in some innovation. As
interest spreads, people become excited about its potential.

Peak of Inflated Expectations: Early adopters have invested in the innovation

2

and boast about its potential. Others begin to invest to avoid being left
behind, causing a bandwagon effect to emerge.

Trough of Disillusionment: Early over-hyped expectations are not satisfied.
As impatience for results surpasses excitement, media coverage switches
to challenges rather than potential.

Slope of Enlightenment: Those early adopters that have persisted with the
innovation begin to experience its benefits. The distinction between the
realistic capabilities of the innovation and the unrealistic expectations
that resulted in the early peak become clearer.

Plateau of Productivity: With greater maturity and understanding comes
stronger uptake. Risks are reduced and penetration accelerates.

In the area of MASs, the peak of inflated expectations had certainly been
reached by the mid-to-late 1990s. Quotes describing agents as a “new revolu-
tion in software” [84] or predicting that agents would become “pervasive in
every market by the year 2000” [92] serve to emphasise the degree to which
they were seen as an essential tool for future software development. This led
to Jennings et al. noting in 1998 that “several observers feel that certain aspects
of agents are being dangerously over-hyped” [94].

However, since then MASs have failed to gain the traction that their claimed
advantages would merit, and OOP remains the dominant paradigm in indus-
trial software development. Recent research in the area indicates that the
“slope of enlightenment” has been reached, however. Greater emphasis is
being placed on bridging the gap between MAS development and more tra-
ditional software development practices. Much work has been done, for ex-
ample, in integrating agent programs with external environments [11, 141, 160]
or distributed component-based systems [110].

Practitioners of OOP have long been accustomed to having tools for develop-
ment, verification and debugging available to them, and it is only in recent
years that an acknowledged lack of such tools in the MAS domain is being
addressed [18]. This has resulted in the development of external debugging
tools [51, 50], along with investigations into metrics for tasks such as inform-
ing programming guidelines and language improvements [88] or identifying
bugs and predicting maintainability [96]. Other research has borrowed famil-
iar concepts from the world of OOP to be adapted to AOP. Examples include

3

the notion of inheritance to promote reuse [97] and the introduction of strong
typing to aid in debugging and error identification [146].

This research demonstrates a conscious effort on the part of the MAS com-
munity to facilitate the development of practical MAS deployments.

1.2 Conversation Management for Multi Agent

Systems

As MASs are a specialised form of distributed system, communication
between agents is an essential capability. This is typically achieved by means
of message passing (discussed in more detail in Chapter 3). Traditional
message-level processing treats each message as a separate event [40]. How-
ever, communication rarely occurs in isolation: a request for action is expected
to result in a response, as is a query for information. In cases such as these, it
is important to have some model of conversations to better reflect the realities
of communication.

The advantages of allowing for the modelling of interactions in terms of con-
versations are outlined by Cost et al. [41], as follows:

• A conversation is a better fit than individual message passing for an in-
tuitive model of agent communication.

• Existing theory and practice of network protocols can be applied to the
domain of agent communication.

• If conversation definitions are kept separate from the actions the particip-
ating agents perform, the conversation structures can be shared amongst
multiple agents.

• If such structures make use of existing Agent Communication Languages
(ACLs) on the lower level, the advantages of these languages are pre-
served. ACLs are discussed in more detail in Chapter 3.

Even where explicit support for conversation management is not a feature of
an AOP language or framework, their importance is emphasised by the sig-
nificant role they play in many development methodologies that have been
created specifically for MASs (e.g Gaia [168], MaSE [165], MASSIVE [112],
PASSI [38], SADAAM [32]).

4

The core focus of this thesis is on the provision of conversation management
capabilities for MASs. The motivations that inspire this work are presented in
the following Section.

1.3 Motivations

The work presented in this thesis is motivated by the belief that greater stand-
ardisation in the area of communication between agents in a MAS is desirable
and that insufficient progress has been made toward that end to date. The
observations that have led to this work being carried out can be categorised
under a number of headings, as follows.

• Insufficient standardisation for agent communication.

◦ Some inroads have been made in the development of standard
models of agent communication. This has occurred most promin-
ently in the efforts that resulted in the Knowledge Query Manipula-
tion Language (KQML) and the ACL developed by the Foundation
for Intelligent Physical Agents (FIPA-ACL). These are discussed in
Chapter 3, with further focus on FIPA in Chapter 4. While these
standards have seen widespread adoption for one-off messaging,
less standardisation has occurred in the area of complex communic-
ation where multiple messages relate to the same conversation.

◦ KQML and FIPA-ACL both have particular semantics for different
types of messages. However, support for these semantics is far
from uniform. Additionally, these semantics are defined in terms of
their effects on the mental models of the agents sending and receiv-
ing the messages. This is problematic for two reasons. Firstly, the
mechanisms by which agents’ mental models are implemented vary
across languages. Secondly, and more importantly, it is impossible
to verify whether the semantics of a message have been followed, as
this would require the ability to examine the internal mental model
of agents sending messages.

◦ Existing conversation standards require interpretation, causing in-
compatibilities. The closest the community has come to a stand-
ardised method of creating conversations has been FIPA’s standard
interaction protocols (discussed in Chapter 4). These standards are

5

not unambiguously clear and as such require an element of inter-
pretation in concrete implementations. This ambiguity can lead to
differences in interpretation and consequently hinder interoperabil-
ity.

• Non-standard approaches are difficult to generalise.

◦ Numerous approaches to conversation management have been pro-
posed in isolation (these are discussed in Chapter 3). In some cases,
this is tied to a particular AOP language and as such is not applic-
able more generally.

◦ Other approaches allow for dynamic conversation creation, where
agents are capable of understanding the semantics of message ex-
change and decide on appropriate responses at run-time. As the un-
derstanding of message semantics is not a feature of all languages,
this approach is also difficult to generalise.

• No single approach to conversation handling has been applied to mul-
tiple frameworks.

◦ Of the potential solutions to the problem of complex interactions
(presented in Chapter 3), none have been applied to multiple AOP
languages or frameworks. Since communication is essential in pro-
moting interoperability between diverse agent technologies, con-
sistent standards for how this is to be approached should be ap-
plicable to a wide variety of languages and frameworks.

• Conversations are difficult to debug.

◦ Due to the lack of conversation handling in many popular frame-
works, software developers of agent-based systems are frequently
required to implement conversations in an ad-hoc manner via in-
dividual messages with no formal link between them. This makes
it more difficult to share descriptions with other developers of how
conversations should be implemented in their own agents and also
makes code less readable as all messages are handled in the same
way.

◦ In the absence of conversation handling capabilities in many lan-
guages, the burden falls on the developer to build these capabilities
themselves, as mentioned in the previous point. However, it also

6

falls on the developer to ensure that unusual communication situ-
ations do not result in unexpected or undesired behaviour. For ex-
ample, creating an agent that can be manipulated into performing
undesired actions by an adversary sending carefully crafted mes-
sages is easily done. This is discussed, along with other pitfalls, in
Chapter 9.

◦ Many AOP languages make use of rules that cause an agent to act
when particular situations occur. For these languages, messages are
typically handled by means of rules that catch anticipated incoming
messages, which cause the agent to perform some reasoning and
possibly reply if appropriate. For languages that follow this pat-
tern, the receipt of messages that do not fit the expected format will
generally cause no action whatsoever, as no rule will be fired. This
leads to the silent loss of messages, which makes it unnecessarily
difficult to debug interactions.

1.4 Core Contributions

This thesis seeks to address the issues touched upon in Section 1.3. In doing
so, it will make the following contributions:

• To provide a holistic view of conversation management within a MAS, it
will:

◦ Provide a formal specification of an approach to conversation man-
agement, so compatible implementations can be created in any lan-
guage;

◦ Outline a generic architecture that specifies how ACRE should be
integrated into any system;

◦ Discuss a reference implementation that integrates into an existing
MAS framework so that it can be used by existing AOP languages;

◦ Provide tool support for developers to facilitate the creation and
management of interaction protocols for MAS.

• To demonstrate the effectiveness of the approach, a user evaluation will
draw comparisons with more traditional methods of communication
handling.

7

• In doing so, a testbed is required so that the evaluation of conversation
management systems can be performed in a reliable manner.

• It will provide a standard for sharing protocol definitions via external
repositories.

• In the achievement of these goals, a number of restrictions are required
to aid in the achievement of greater compatibility:

◦ A centralised definition of protocols allows external monitoring to
take place as part of debugging, system monitoring and verification.

◦ Minimal assumptions are made about the capabilities, features and
attributes of agents that are candidates for ACRE integration. Pro-
grammers are free to use the features of their chosen language to
implement deliberation regarding communication.

◦ Compatibility with agents fluent in FIPA-ACL that do not integrate
directly with ACRE is maintained.

1.5 Thesis Outline

The organisation of this thesis is presented below. The Chapters are organ-
ised into two parts. The first part is concerned with the background to the
work presented in the thesis. This covers Chapters 2, 3 and 4. Following
this, the second part presents ACRE, beginning with a general introduction in
Chapter 5 and becoming more specific before outlining an evaluation process
in Chapter 9. The chapters that constitute this thesis are as follows:

Chapter 2: Agent Oriented Programming. This Chapter provides an intro-
duction to the notion of Agent Oriented Programming. It includes an
exploration of what is meant by the term “agent”, in addition to outlining
a number of current or influential approaches to writing agent programs.

Chapter 3: Agent Communication As the focus of this thesis is specifically
on the communication between agents, this Chapter reviews past at-
tempts to model and standardise agent communication. This includes
standalone message-passing between agents and also attempts to model
conversation-style communication.

8

Chapter 4: FIPA Communication Standards The Foundation for Intelligent
Physical Agents (FIPA) has provided standards that agent developers
are encouraged to adopt. The most influential of these are the standards
relating to communication. These include specifications for how indi-
vidual messages should be structured, in addition to outlining a number
of common interaction patterns that can be modelled as conversations.
The work in this thesis is based on these standards, which are outlined
and analysed in this Chapter.

Chapter 5: Introduction to ACRE This Chapter introduces the Agent Com-
munication Reasoning Engine (ACRE), which is the core contribution of
this thesis. The capabilities of ACRE are introduced informally, along
with examples to illustrate how ACRE deals with a running conversa-
tion.

Chapter 6: ACRE Formal Model The operational semantics of ACRE’s con-
versation handling are presented in this Chapter. For consistency, the ex-
amples from Chapter 5 are repeated, with the conversation being presen-
ted according to the mathematical model of the operational semantics.

Chapter 7: Generic Architecture This Chapter presents a suggested generic
architecture to guide ACRE’s integration with existing AOP frameworks.
This includes descriptions of the platform-independent aspects of ACRE
and the capabilities a framework should have in order to be suitable for
integration.

Chapter 8: Integration with Agent Factory Following the Generic Architec-
ture, this Chapter outlines a specific implementation of ACRE within the
Agent Factory AOP framework. It discusses the decisions made in con-
ducting this integration and how the existing capabilities of the frame-
work (and the AOP languages it supports) can be augmented by the ad-
option of ACRE.

Chapter 9: Evaluation This Chapter presents the results of an evaluation that
was conducted to compare the approach taken in ACRE with one based
on individual standalone communication. The participants in the eval-
uation were two classes of students taking an Agent Oriented Software
Engineering module. Participants were presented with a scenario for
which to implement an agent-based solution.

9

Chapter 10: Conclusions and Further Work The final chapter outlines some
ideas for further extensions to the work presented this thesis and
presents some concluding remarks.

10

Part I

Background

CHAPTER

TWO

Agent Oriented Programming

2.1 Introduction

Agent Oriented Programming (AOP) is a software development paradigm
aimed at creating entities known as “intelligent agents” [95] or “rational
agents” [169]. This is typically aimed at the development of large-scale dis-
tributed Multi Agent Systems (MASs), which are intended to provide higher
level abstractions than traditional distributed programming [152].

Because of their distributed nature, an essential aspect of a MAS is the commu-
nication between agents. The core aim of this thesis is to explore how agents
within a MAS can be facilitated in performing this communication in reliable,
predictable and verifiable ways. To facilitate this aim, this Chapter and the fol-
lowing two Chapters explore previous work that has been done in the area of
AOP and agent communication. This Chapter begins this review by examin-
ing AOP in general.

It is first necessary to arrive at an appropriate definition of what exactly is
meant by the term “agent”. Several definitions have been proposed and full
consensus has never been reached on what constitutes agency. Despite this,
there is sufficient agreement on the core attributes of an agent to allow a rel-
atively uncontroversial definition to be arrived at. This is done in Section 2.2.
The Agent Oriented Programming is then introduced in Section 2.3. This is fol-
lowed in Section 2.4 by a survey of the most commonly used AOP languages
and frameworks. The work in this thesis is intended for use in as broad a set
of agent technologies as possible. As such, it is important to identify the cap-
abilities of frameworks that are already in use, so as to make consistent design
decisions on interoperability.

12

2.2 What is an “agent”?

In software development terms, the phrase “software agent” has attracted a
myriad of competing definitions. This ranges from simple programs that per-
form tasks on behalf of users to sophisticated entities that leverage principles
of Artificial Intelligence to perform complex planning, reasoning and actions.
Researchers within the AOP community frequently make use of terms such as
“rational agent” [169] or “intelligent agent” [95] to describe their work. This
indicates that the “agent” spoken about in this context is distinct from simpler
programs.

The notion of intelligence is generally taken to mean that the agent is capable
of flexible autonomous action. Without the requirement for intelligence, Jen-
nings and Wooldridge note that processes such as the UNIX xbiff utility,
which perceives the environment in which it is situated (monitoring a user’s
incoming email) and takes actions when that environment changes (alerting a
user to the presence of new mail), could be described as an agent [95]. Sim-
ilarly, many “agents” referred to by software developers are merely glorified
search engines or user interfaces [152].

Fisher considers it important that although autonomy is a central aspect to
agency, rational agents should also exhibit reasonable and explainable beha-
viour [59]. This requires that a number of aspects of an agent are represented,
namely informational aspects (beliefs and knowledge), motivational aspects
(goals and intentions) and deliberative aspects (why it makes the choices it
does).

There has long been an acknowledgement in the agents community that total
agreement has not been reached on what precisely an “agent” actually is [95].
Wooldridge and Jennings propose a weak notion of agency that they consider
to be uncontentious [167]. This weak notion of agency includes autonomy, social
ability and a combination of reactive and proactive behaviour. The precise mean-
ing of each term is discussed in more detail in the Sections that follow. These
four elements are sometimes accepted as the only key features of agency (e.g.
in [162]). In other cases, the definition is expanded to include other aspects
such as situatedness, mobility and benevolence.

Beyond their weak notion of agency, Wooldridge and Jennings also propose
a stronger notion of an agent that “is either conceptualised or implemented
using concepts that are more usually applied to humans” [167]. This is in
keeping with Shoham’s definition of an agent as a computing entity “whose

13

state is viewed as consisting of mental components such as beliefs, capabilities,
choices, and commitments” [150]. This is an approach that many developers
of AOP languages have followed, as can be seen in Section 2.4.

2.2.1 Autonomy

The notion of autonomy is considered to be a key element of agency in any
discussion of intelligent agents (e.g. [27, 34, 95, 98, 113, 162, 152, 150, 167]).
It appears in the weak notion of agency proposed by Wooldridge and Jen-
nings [167]. Even where narrower definitions are used, autonomy still plays
a central role. An example of this is Singh’s definition, which considers only
autonomy and interoperability as the two key attributes of agents [152].

A number of studies have drawn a distinction between the autonomy of an
agent and the concept of encapsulation as it applies to Object Oriented Pro-
gramming [95, 113]. An object encapsulates a state and allows control over
that state by means of the methods it provides. This is a feature of agents also.
The object itself has no control over how or when these methods are invoked,
however. For example, an object cannot prevent the execution of a method by
another object. In contrast, agents are said to encapsulate not only state but
also behaviour. They make their own decisions about the actions they take.
Thus, agents can be thought of as requesting actions of each other, rather than
invoking each other’s methods.

2.2.2 Social Ability/Interoperability

Interoperability, or the ability of agents to communicate with one another, is
the other key concept identified in Singh’s narrow definition of an agent [152].
This social ability also appears in Wooldridge and Jennings’ weak notion of
agency [167].

Communication between agents is generally performed using an Agent Com-
munication Language (ACL) [80, 102, 159]. An ACL is intended to allow an
agent to inform another of some fact, request action, query the truth of a pro-
position and other related tasks.

Several ACLs have been proposed, the most notable being the Knowledge
Query Manipulation Language (KQML) and the ACL of the Foundation for
Intelligent Physical Agents (FIPA). As communication between agents is the

14

core focus of the work presented in this thesis, these are discussed in more de-
tail in Chapter 3, along with a survey of how more complex communication
has been implemented in MASs.

2.2.3 Perception and Environment

Many agent definitions consider situatedness in an environment as being a
central aspect to agency. Typically, this is in the context of the agent having the
capability of perceiving its environment [36, 95, 82, 116, 152]. Although not
explicitly included in the weak notion of agency espoused by Wooldridge and
Jennings, it is mentioned in the context of reactivity [167]. In this definition,
reactivity relates to the ability of an agent to respond in a timely manner to
changes that occur in its environment.

Others have asserted that an agent is a mental entity and as such there is no
requirement that it must interact with an environment [86]. Although many
agents may be situated in an external environment (e.g. agents that are used
to control a robot in a physical environment), it can be argued that it is not
fundamental to the definition of agency.

2.2.4 Proactivity and Reactivity

Requirements of proactivity and reactivity are also contained in the weak no-
tion of agency [167] and have been accepted by many others (e.g. [36, 86, 162]).
Here, reactivity refers to the ability of an agent to react to changes in its envir-
onment in a timely manner. An agent exhibits proactive behaviour when it is
capable of taking the initiative towards achieving any goals that it may have.
It is generally accepted that a successful agent will exhibit a combination of
both types of behaviour.

2.2.5 Benevolence

Benevolence is the assumption that agents do not have conflicting goals. Ro-
senschein and Genesereth observe that almost all early work in distributed
artificial intelligence (from which the idea of intelligent agents arose) operated
on the assumption of benevolence [142]. With this assumption, agents are as-
sumed to be helping one another towards common or compatible goals.

15

Benevolence is not considered to be part of the weak notion of agency [167] and
it does not tend to be included in modern definitions of agency. Indeed, a sig-
nificant body of research exists on handling conflict and trust issues amongst
agents (surveys of the work conducted in this area can be found in [132, 138]).

2.2.6 Mobility

Mobile agents are those that are capable of moving from one environment to
another, typically by migrating to a different host on a network [167]. An ad-
vantage of mobility is that an agent may perceive some deficiencies in their
present environment and cause a migration to occur to a more favourable host.
An example of this occurs where two agents are required to communicate with
one another frequently. If the communication load on the network is likely to
be significant, it may be advantageous for the agents to migrate to the same
platform and communicate locally [54].

Although this is considered an important facet for many researchers (examples
include [54, 120]), it is not core to the definition of an agent. This is emphas-
ised by the categorisation of agents as mobile or static agents, as done by
Nwana [127].

2.2.7 Other Properties

The above is not an exhaustive list of all the properties that have, at some point,
been included in agent definitions. Some others include the following:

Rationality: The agent works towards the achievement of its goals, and will
not perform any action that is detrimental to their achievement [116, 167].

Temporal Continuity: The agent is a continuously running process [78, 150].

Learning: The agent is capable of changing its behaviour based on past exper-
ience [78].

Flexible: The actions of an agent are not scripted in advance [78].

Character: An agent has a believable personality and an emotional state [78].

16

2.2.8 Adopting a Definition

For the purposes of this work, it is sufficient to adopt the weak notion of
agency set out by Wooldridge and Jennings [167], which considers agents to
be autonomous, social, reactive and proactive.

As discussed above, autonomy is a fundamental feature of any agent defini-
tion. The consequence of accepting autonomy as a key agent feature is that it
is important that the the work in this thesis should not limit the autonomy of
the agents that make use of it.

As the work in this thesis focuses specifically on the communication between
agents, the social ability of agents is also an acceptable key requirement. It is
assumed that all agents are capable of sending and receiving communications
to and from others. This work will not be applicable to any computational
entity lacking these abilities.

The proactive and reactive nature of agents refers to how they respond to
changes in their environment and how they plan the achievement of their
goals. The fact that many agents will exhibit a combination of these beha-
viours means that the provision of a communication framework must allow
for either approach when dealing with communication.

With regard to other potential elements of a definition of an agent, it can be
left to the creators of MASs and MAS toolkits to decide whether they are rel-
evant to their model of agency. The question of whether they are fundamental
aspects of the definition of an agent is not one that requires an answer in the
context of this work. For instance, the existence of an environment in which an
agent is situated is not relevant to how it engages in communication. Similarly,
the inclusion of mobility is not a requirement of this work. The location and
possible relocation of agents is not core to modelling how agents communic-
ate with one another, assuming some mechanism is in place that ensures that
a message addressed to a particular agent will reach its intended destination.

Due to the volume of work conducted in the area of modelling and dealing
with agent trust, benevolence is not assumed in this work. Agents are free to
adopt any suitable model of trust.

17

2.3 Agent Oriented Programming

“Agent Oriented Programming” (AOP) is a phrase coined by Shoham in his
proposal for a framework of computation where the state of the entities (called
“agents”) in the system consists of mental concepts such as beliefs, decisions,
capabilities and obligations [150]. In this initial proposal, it is seen as a special-
isation of Object Oriented Programming (OOP). The relationship between the
two paradigms is shown in Table 2.1, which is taken from [150].

Table 2.1: Comparison of Object Oriented Programming (OOP) concepts with
Agent Oriented Programming (AOP) (taken from [150]).

OOP AOP
Basic unit object agent
Parameters defining unconstrained beliefs, commitments,
state of basic unit capabilities, choices, . . .
Process of computation message passing and message passing and

response methods response methods
Types of message unconstrained inform, request, offer,

promise, decline, . . .
Constraints on methods none honesty, consistency, . . .

This relationship between agents and objects has been adopted by other re-
searchers also, including Odell et al. [128]. Their basic definition of an agent,
from a software development point-of-view, is that of “an object that can say
‘go’ (dynamic autonomy) and ‘no’ (deterministic autonomy)”. That autonomy
is key to this definition is in keeping with the definition of an agent adopted in
Section 2.2.8. In this case, “dynamic autonomy” refers to an agent’s ability to
exhibit proactive behaviour whereas “deterministic autonomy” is the ability
to refuse or modify an external request. This is in strong contrast to the beha-
viour of objects, which typically cannot act without external invocation, and
whenever such an invocation occurs the associated action must occur.

Key to Shoham’s proposal is the notion that agents exist within a societal con-
struct that allows them to interact with one another. This interaction is pro-
posed to follow the principles of speech act theory (discussed in Section 3.2.1)
to allow agents to inform, request, offer, accept, etc.

Much work had previously been done in the Artificial Intelligence community
in an attempt to reason about mental attitudes using various forms of logic.
Wooldridge and Jennings see AOP as developing practical programming lan-
guages that embody the various principles proposed by theorists [167]. Indeed

18

Shoham notes that it would be “tempting to view AOP as a form of logic pro-
gramming” [150].

One early and very influential model for intelligent agents is the Belief, Desire,
Intention (BDI) model [23]. This models the internal workings of an agent in
terms of three mental attitudes. Beliefs are intended to model information,
desires to model motivation and intentions to model decisions [139]. Most
practical implementations of BDI systems have their roots in the abstract inter-
preter proposed by Rao and Georgeff [140]. This operates in a cyclical fashion,
with a number of stages required on each iteration. These include generat-
ing options (actions that the agent can undertake) from events that have been
perceived, creating intentions to carry out some of those options, execution of
adopted intentions, generation of new events and the dropping of successful
or impossible intentions. This iterative approach to an agent interpreter is one
that has been followed in many implementations since.

Approaches to tackling the issue of programming agents have varied from the
purely declarative to the purely imperative. However many practical AOP
languages adopt a hybrid approach. A number of languages and frameworks
aimed at AOP are discussed in the next Section.

2.4 AOP Frameworks and Languages

This Section briefly introduces a number of programming languages and
frameworks aimed at the facilitation of AOP development. It begins with a
brief introduction to a variety of languages. This is followed by a more in-
depth view of some current frameworks and languages that are candidates
for integration with the work presented in this thesis. Those selected are lan-
guages cited as important in recent work (e.g. [3, 146]). The mechanisms by
which these languages implement interaction between agents is omitted from
this Section, as it is discussed in detail in the next Chapter (in Section 3.4),
which concentrates on communication.

The first practical agent programming language was AGENT0, which was de-
veloped by Shoham [149, 150]. AGENT0 is a relatively simple language for
creating purely reactive agents. It lacks the advanced planning capabilities of
later AOP languages. The key entities included in AGENT0’s mental model
are beliefs, commitments and capabilities. Commitment rules operate on the
belief base of the agent in order to determine when commitment to action

19

should be made. The definition of capabilities allows an agent to determine
whether it is capable of performing an action another agent requests of it.

Communication between agents is considered to be a key aspect of the lan-
guage. This is based on speech act theory (see Section 3.2.1 for discussion of
this). Three types of communication are permitted, which allow an agent to
inform another of some fact, request another to perform some action and to
retract unfulfilled requests. This approach has been adopted by many MAS
languages and frameworks that are inspired by AGENT0.

Actions are standalone, in that advanced planning is not possible. Beliefs are
generated either by the receipt of messages from other agents, or through
private actions carried out by the agent itself. Here, no distinction is made
between perception and action, as it is in many later languages. The capab-
ilities of an agent are fixed, so agents may not learn new actions at any time.
Also, the environment in which an agent sits is not expressly accounted for, al-
though there is nothing to prevent the implementation of actions that interact
with the environment.

AGENT0 was succeeded by PLACA (PLAnning Communicating Agents),
which adds the ability to achieve goals [155]. Additionally, plans can be
defined for PLACA agents, which consist of sequences of actions and any sub-
goals that are necessary.

An additional contribution of Shoham’s work is in his vision of an interpreter
for agents. This interpreter operates in a loop consisting of two key steps, ex-
ecuted at regular intervals. Firstly, the agent’s current messages are read and
its mental state is updated. This involves updating the belief base and adding
any commitments that arise from the commitment rules. Next any active com-
mitments are executed, which may also affect the belief base. This type of
cyclical execution of agents has served as a model for many AOP frameworks
since.

ConGolog [45, 108] is a concurrent version of the earlier Golog [109]. It is a
logic programming language that reasons about actions. Agents have beliefs
about an initial state of their environment, along with a set of beliefs about later
states that are reachable from this initial state by means of executing some se-
quence of actions. The applicability of actions is known, so the agent can verify
whether an action is appropriate to a given state. ConGolog offers a powerful
language for the description of complex actions. Constructs such as sequen-
cing, non-deterministic choice, iteration and prioritisation are supported. A

20

variant called IndiGolog allows agents to gather new data from their environ-
ment during execution [46, 147].

Concurrent METATEM is an agent programming language that relies on the
direct execution of temporal logic statements [58, 59, 60]. This temporal as-
pect distinguishes it from other logic-based approaches. A definition of the
messages an agent can receive and send can be created, acting as a type of
API for other agents. Extensions to the basic language allow for goals to be
re-ordered (e.g. to begin by satisfying some of the more achievable goals) and
supplementing beliefs with the concepts of ability (knowledge that some agent
is capable of performing some action) and confidence, which expresses beliefs
about future states and is derived from its confidence in other agents in the
system.

MINERVA is an agent programming architecture based on the principles of
Dynamic Logic Programming to achieve a balance between the reactive and
rational behaviour of intelligent agents [107]. Each agent consists of a number
of possibly concurrent sub-agents that each perform various tasks while util-
ising a common knowledge base. This knowledge base models information
about the agent itself and its surrounding agent community and includes con-
cepts such as capabilities, intentions, goals, plans, reactions, an object know-
ledge base and internal behaviour rules. This knowledge is represented by a
combination of the Multi Dimensional Logic Programming language [106] (to
represent the knowledge of an agent at each state) and LUPS [2] (to represent
transitions between states of the agent).

KGP is a model of agency that is so named because agents’ mental state con-
sists of knowledge, goals and plans [21, 98]. Supplementing these is a set of
reasoning capabilities that support planning, temporal reasoning, identifying
the preconditions of actions, reactivity and decision-making with regard to
goals. Transition rules define how the state of the agent can change. These
rules include such actions as changing goals either reactively or through plan-
ning, sensing observations from the environment and executing actions. KGP
draws on the principles of the classic BDI model, but uses Computational Lo-
gic so that formal analysis of the model and its computational feasibility can
be facilitated.

Go! is a multi-paradigm programming language that uses both declarative
and imperative programming to yield a BDI system [31]. It is based on pre-
vious work done on April [118] and draws further influence from IC-Prolog
II [30] and L&O [117]. Definitions of functions and relations are created declar-

21

atively, with an imperative style used to create action procedure definitions.
The mental state of agents consists of beliefs, desires and intentions. These are
maintained in tuple stores, which can be read and manipulated by the threads
that constitute the agents. It is a strongly typed, multi-threaded language, with
communication performed through asynchronous message passing.

JACK is a Java-based language for BDI agents [25, 162]. It extends Java with a
number of syntactic constructs to allow developers to define mental attitudes
such as beliefs, plans and events. A number of statements are made available
by default within the body of an agent plan. These include communication
with other agents, waiting for a condition to become true and raising events.
A JACK agent acts reactively in response to events. Those plans that are rel-
evant to the event are evaluated to ensure that they are possible to execute
given the agent’s state. If such a plan is available, it is chosen for execution.
This execution cycle is similar to that of earlier BDI systems such as the Dis-
tributed Multi-Agent Reasoning System (dMARS) [48, 49] and the Procedural
Reasoning System (PRS) [81].

Jazzyk is an agent programming language (and associated interpreter) de-
veloped by Peter Novák [126]. It is based on the idea of Behavioural State
Machines (BSMs) [125]. BSMs are built as transition systems whereby the
state of the system is the agent’s mental state and transitions are brought
about by atomic updates of this mental state. A BSM draws a clear distinc-
tion between two layers: the knowledge representation layer, which may consist
of multiple heterogeneous knowledge representation modules; and a behavi-
oural layer, which is responsible for controlling the agent.

In the early 2000s, the Foundation for Intelligent Physical Agents (FIPA) re-
leased a number of standards relating to MASs. This was an attempt to stand-
ardise agent platforms so they would function in a predictable and interop-
erable manner. These standards include the FIPA Abstract Architecture Spe-
cification [65], which outlines the architectural elements that should be present
within an agent system, along with the relationship between them. Another
such standard is the FIPA Agent Management Specification [77] to define
standard interfaces for accessing agent management services. This includes
addressing such issues as how agents can be located, named and contacted,
along with how the life cycle of agents should be handled and how they can
register with an Agent Management Service running on an Agent Platform.
Following this, a number of agent toolkits were implemented that followed
these standards, including FIPA-OS [136], JADE [12] and Agent Factory [36].

22

2.4.1 AgentSpeak(L) and Jason

AgentSpeak(L) is a programming language originally aimed at bridging
the gap between the theoretical BDI model and the practicality of existing
BDI-style programming languages that lacked a sound theoretical underpin-
ning [139]. The original language has been extended through its use in the
Jason MAS framework [19, 20, 159].

The language began as a formalisation of the operational semantics of the ex-
isting PRS [81] and dMARS [48, 49] BDI systems. AgentSpeak(L) makes use
of a restricted first-order language to define events and actions. Although be-
liefs, desires and intentions are not explicitly modelled in the language, these
mental attitudes can easily be applied to the execution model of the agent.

The key mental components of the AgentSpeak(L) language are beliefs and
goals. These model the agent’s view of its environment, in addition to states
the agent wishes to bring about. The addition or removal of beliefs or goals
are described as triggering events that may cause the agent to execute a plan.
A plan describes a sequence of actions that the agent should carry out in order
to satisfy some goal.

Goals are divided into two categories: achievement goals and test goals. An
achievement goal represents a goal whose aim is to bring about a particular
state of affairs that is desired by the agent. The adoption of an achievement
goal will result in a plan being selected that provides the means to result in the
desired state. A plan that has been adopted to achieve a goal represents the
“intention” of BDI parlance. Test goals are proactive checks on the belief base
of the agent to test if the agent believes some proposition.

Plan selection is performed by means of rules. A rule consists of a triggering
event (typically the adoption or removal of a goal or belief), a context (some
precondition consisting of belief literals that specify when the rule is applic-
able) and a plan body (a sequence of actions or goals that the agent will per-
form or achieve when the plan is triggered).

Jason is an interpreter for AgentSpeak(L) that extended the original language
with practical capabilities like integration with an environment (which can
be implemented using Java), communication and the ability to distribute an
AgentSpeak(L)-based MAS over a network. In doing so, it was necessary to
extend the original operational semantics of the language [19].

The Jason interpreter operates iteratively. On each iteration, it firstly updates

23

the list of events for each agent. Additions to this list will typically be gen-
erated from changes in the agent’s environment or from its intentions. Next,
an event is selected and a set of relevant plans is identified. A relevant plan
is one whose trigger matches the selected event. This set is further narrowed
by using the contexts of the relevant plans to find those that are applicable to
the current situation. One of these applicable plans is selected to be a new
intention. Finally, an active intention of the agent is selected for execution.

1 skill(plasticBomb).
2 skill(bioBomb).
3 ˜skill(nuclearBomb).
4

5 safeArea(field1).
6

7 @p1
8 +bomb(Terminal, Gate, BombType) : skill(BombType)
9 <- !go(Terminal, Gate);

10 disarm(BombType).
11

12 @p2
13 +bomb(Terminal, Gate, BombType) : ˜skill(BombType)
14 <- !moveSafeArea(Terminal, Gate, BombType).
15

16 @p3
17 +bomb(Terminal, Gate, BombType) : not skill(BombType) &
18 not ˜skill(BombType)
19 <- .broadcast(tell, alert).
20

21 @p4
22 +!moveSafeArea(T,G,Bomb) : true
23 <- ?safeArea(Place);
24 !discoverFreeCPH(FreeCPH);
25 .send(FreeCPH, achieve, carryToSafePlace(T,B,Place,Bomb)).
26

27 ...

Figure 2.1: Sample AgentSpeak(L) code in Jason (taken from [19]).

An example of AgentSpeak(L) code for use in Jason can be seen in Figure 2.1.
This is taken from a sample disaster-recover scenario where agents must co-
operate to disarm bombs at an airport. The early lines indicate initial beliefs
that the agent has when it is started. Initially, it believes that it possesses the
necessary skills to disarm plastic explosives (line 1) and biological weapons
(line 2), but not nuclear bombs (line 3). The tilde operator negates beliefs.
Additionally, the agent is aware that “field1” is a safe place to put bombs that
it cannot disarm.

Following this are four plans (labelled p1 through p4). For the first three

24

plans, the triggering event is that a new event has been created that matches
+bomb(Terminal, Gate, BombType). Constant atoms begin with lower-
case letters whereas those beginning with capital letters are variables (it is sim-
ilar to Prolog in this sense). Hence any event that matches that pattern can
trigger any of those rules. The plan to be executed depends on the rule’s con-
text. Plan p1 applies where the agent believes it has the skill to disarm the
relevant bomb type (the BombType variable will be bound to the particular
type of bomb that was included in the event that triggered the rule). In this
instance, the agent will adopt an achievement sub-goal (not shown) to travel
to the terminal and gate that were included in the event (line 9). Achievement
goals are preceded by the ! character. It will then perform a basic action (not
shown) to disarm the bomb (line 10).

In the event that the agent does not know about a bomb type (it neither be-
lieves it has the requisite skill nor that it lacks it), plan p3 will fire, causing a
broadcast message to be sent to other agents to alert them to the threat. The
dot before the name of the .broadcast action on line 19 indicates that this is
a built-in action that is available by default to all Jason agents.

If the agent believes it does not have the skill to disarm the bomb, plan p2 will
be triggered instead. An achievement goal is adopted to move the bomb to a
safe area. In this agent, this will cause plan p4 to be fired, which happens any
time a !moveSafeArea goal is adopted. This is the case because the context
of the rule (true) does not place any restrictions on when the plan can be
adopted.

Once this occurs, the agent first queries its belief base using a test goal (be-
ginning with a ? character) to find a known safe place. This has the effect of
binding the Place variable to a known safe area from the belief base (in this
case, it will acquire the value “field1”). It then adopts a further achievement
sub-goal in line 24 that will cause the agent to attempt to find an agent capable
of carrying a bomb to another place. On success, the identifier of this agent
will be bound to the FreeCPH variable. Finally, a message is sent (using an-
other internal action) to ask that agent to carry the bomb to the specified safe
area.

2.4.2 Agent Factory

Agent Factory is an open source framework for the development and deploy-
ment of MASs [34, 36, 121]. It offers both a standard edition for regular com-

25

puters and also a micro edition for use on resource-constrained devices (the
micro edition is discussed in detail in [120, 121]).

The standard edition offers a FIPA-compliant runtime environment at its core.
The architecture is shown in Figure 2.2.

Figure 2.2: Agent Factory Architecture

Originally, the Agent Factory Agent Programming Language (AFAPL) and its
successor AFAPL2 were the only AOP languages supported by the framework.
This has since been joined by numerous other AOP languages through the
Common Language Framework (CLF) [145]. These include AF-AgentSpeak
(an adaptation of AgentSpeak(L)) and AF-TR, (based on Nilsson’s teleoreact-
ive model [123]). A hybrid of these approaches, called AS-TR, combines ele-
ments of AgentSpeak(L) and teleoreactive behaviour, reflecting similar work
done by Coffey and Clark [33].

26

The Platform Service model allows agents to access shared services that
provide capabilities such as Message Transport Services (MTSs), an Agent
Management Service (AMS) and access to the environment. Figure 2.2 shows
environment access through an Environment Interface Standard (EIS) inter-
face [11], but the framework is extensible with platform services offering ac-
cess to other environment models.

The AFAPL language is primarily based on beliefs, commitments and commit-
ment rules [35]. It has been formally specified using a multi-modal branching
time first-order logic of commitment [34]. A commitment models a decision
that an agent has made to perform some action or series of actions. Com-
mitment rules cause commitments to be adopted when particular belief states
arise. Basic actions and sensors are available to effect change to and sense
changes in an agent’s environment. Actions can be used to compose plans us-
ing a number of plan operators that allow for sequential or parallel execution,
looping, waiting and querying of the belief base.

Later additions to AFAPL include support for goals [121] and roles [37]. Roles
add a level of abstraction that promotes software reuse. Where agents can play
numerous roles within a MAS, it is useful to package the commitment rules,
plans and other elements required to fulfil that role. This allows agents to
switch between roles and also facilitates the reuse of previously defined roles
when necessary.

Figure 2.3: Agent Factory interpreter cycle (taken from [35]).

The AFAPL interpreter operates cyclically, and is illustrated in Figure 2.3, be-
ginning each iteration by updating the agent’s belief base. This is done in two
stages: firstly perception occurs so beliefs from the agent’s sensors can be ad-
ded (PERCEPT). This is followed by a temporal update (TUPDATE) that adds
any persistent beliefs to the current belief base.

27

Following this, any commitment rules capable of being triggered by the cur-
rent belief base are adopted (ADOPT). This is followed by the commitment
management stage (MANAGE), which involves such activities as ensuring
that commitments can still be achieved, handling failure and dropping suc-
cessful commitments. This is followed by the execution of actions (ACT), and
finally a check is performed to see if the agent has decided to move to another
platform (MIGRATE). As soon as this cycle has completed, it iterates again,
beginning with the update of the belief base [35].

Agent Factory has been chosen as the platform with which the concrete refer-
ence implementation for the work in this thesis was integrated. As such, it is
discussed in more detail in Chapter 8.

2.4.3 GOAL

In GOAL (Goal Oriented Agent Language), the key concept is that of declarat-
ive goals [44, 87]. This is a contrast to goals as they are used in other languages
such as AgentSpeak(L) and 3APL. In those languages, a goal is in effect a plan,
as it represents the desire of an agent to perform some action. In contrast, a
declarative goal represents a desired state to be brought about. The use of de-
clarative goals is seen as an opportunity to make use of modal logic to specify
and verify agent programs, which is not possible with other AOP languages.

The mental state of a GOAL agent consists of a belief base and a goal base.
A third basic concept allows the capabilities of an agent to be defined. Basic
actions can be used to add and remove beliefs and goals. Conditional actions
can be specified by users that can be executed only when the mental state of
the agent satisfies certain conditions.

The agent program consists of conditional action rules in the form if ψ then a,
where ψ is a mental state condition (i.e. a goal or belief, or a combination of
these using boolean operators) and a is an action. This specifies the conditions
under which the agent will perform actions.

GOAL is not only presented as a concrete programming language, but is also
built upon formal operational semantics and a theory to prove the correctness
of programs based on temporal logic. Correctness is considered to be when
the agent program successfully realises the goals of the agent.

Figure 2.4 shows sample code for a GOAL agent. This is written as part of an
agent to solve the classical “dining philosophers” problem from concurrency

28

1 beliefs{ hold(fork,left). }
2 goals{ hold(fork,left), hold(fork,right). }
3 program{
4 if true then think.
5 if true then eat.
6 if bel(hungry)
7 then adopt(hold(fork,left), hold(fork,right)).
8 if goal(hold(fork,_)), bel(not(forksAvailable),neighbours(X,Y))
9 then send(new:{X,Y},!hold(fork)).

10 if bel(neighbour(X,D), not(hold(fork,D))), bel(X,on(fork,table))
11 then ins(on(fork,table,D)).
12 if bel(conversation(Id,i))
13 then pickUp(fork,D) + send(Id:X, .hold(fork)).
14 if bel(conversation(Id,i), hold(fork,left), hold(fork,right),
15 neighbours(X,Y)) bel(X,not(on(fork,table))),
16 bel(Y,not(on(fork,table)))
17 then close(Id).
18 if bel(conversation(Id,X)), goal(X, hold(fork))
19 then putDown(fork,D) +
20 send(Id:X, .on(fork,table), not(hold(fork))).
21 if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))
22 then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).
23 }
24

25 action-spec{
26 think{
27 pre{not(hungry)}
28 post{hungry}
29 }
30 pickUp(fork,D){
31 pre{on(fork,table,D)}
32 post{hold(fork,D),not(on(fork,table,D))}
33 }
34 eat{
35 pre{hungry,hold(fork,left),hold(fork,right)}
36 post{not(hungry)}
37 }
38 putDown(fork, D){
39 pre{hold(fork,D)}
40 post{on(fork,table,D),not(hold(fork,D))}
41 }
42 }

Figure 2.4: Sample GOAL code (taken from [87])

theory [16, p. 122]. In short, this problem involves a number of philosophers
sitting around a circular dining table with one fork between each person. To
eat, a philosopher must have a fork in each hand. Philosophers can either think
(making them hungry) or eat (which reduces hunger). They must negotiate
with one another to secure access to two forks at the same time so they can eat.

The initial beliefs and goals are defined at the beginning of the program. The

29

agent begins with the belief that it holds a fork in its left hand. It has goals to
hold a fork in both its left and right hands.

At the bottom of the program (from line 25 onwards), a number of actions are
specified. Each is defined in terms of its preconditions and postconditions.
For example, the eat action (defined from line 34) can occur when an agent is
hungry and holds forks in both its right and left hands. The outcome of this
action is that it is no longer hungry. Other actions can be seen elsewhere in the
program that are available by default. These include ins to insert a belief into
the belief base, del to delete a belief from the belief base and send to send a
message.

The program itself begins on line 3. The interaction between agents begins
with the rule on line 8. If an agent has a goal to hold a fork but they are not
available (forksAvailable is defined elsewhere in the program and is not
shown), then it will initiate a new conversation with its neighbours to instruct
them (the exclamation mark in the message indicates that it is an imperative
message) to pick up the fork. Another informative rule begins on line 18. Here,
if the agent is engaged in a conversation with a neighbour (identified by X),
and it is aware that X has the goal to hold the fork, it reacts by putting the
fork on the table and informing X (the dot in the message indicates that it is a
declarative type message) that the fork is on the table and the sender no longer
holds the fork. The other type of message supported by GOAL can be seen on
line 22. An interrogative message is indicated by a question marks. In this
message, the sender is enquiring whether the fork is on the table.

2.4.4 JADE and Jadex

JADE (Java Agent DEvelopment framework) is a Java-based middleware plat-
form with the aim of facilitating the development of MASs [12, 15]. It provides
a mechanism to deploy distributed MASs, along with a suite of develop-
ment and debugging tools to aid development. Its principal feature is that
it provides a Java implementation of the FIPA agent architecture including
such services as agent management, communication, addressing and discov-
ery. An Agent class is provided that may be extended by developers to create
agent programs in Java. Debugging tools include the provision of a Dummy
Agent (which can be used to inject messages into the MAS) and a Sniffer Agent
(which can intercept communication to give the developer an insight into the
interaction that is occurring within the MAS). JADE does not natively support

30

any particular AOP language. All programs running natively within JADE
must be written in the Java OOP language. However, JADE is a common
choice for a base on which AOP languages can be based.

An example of this is Jadex, which is a BDI layer built on the JADE middleware
platform [24, 135]. Whereas JADE concentrates on providing a communication
infrastructure and platform services, Jadex concentrates on the internal reason-
ing of the agents themselves. Agent definitions are written in an XML format
that allows the developer to specify such things as plans, goals and initial be-
liefs. The implementation of the actual beliefs and plans themselves is by way
of Java classes.

The principal agent-oriented constructs that Jadex makes available are beliefs,
plans, goals and capabilities. Goals are contained in a goal base, which is ac-
cessible to the reasoning components, which will consult available plans in
deciding how goals may be achieved. Jadex supports four types of goal:

• A perform goal is related to the performance of some action, regardless of
the outcome of that action.

• Achieve goals relate to a desire to bring about some state of the world.

• A query goal relates to the availability of some information the agent
wants to know about.

• An agent will continually plan to re-establish a desired state when using
a maintain goal.

The implementation of Jadex agents is done by combining an XML file that
defines the beliefs, goals and plans of the agent with procedural code written
in Java, built on the JADE multi-agent framework.

The execution model of a Jadex agent is illustrated in Figure 2.5. The in-
ternal structure consists of a number of clearly-defined, separate components.
The Message Receiver is responsible for identifying appropriate capabilities to
handle the message. A capability is responsible for generating an appropriate
event for the message.

Events are handled by the Dispatcher. It matches the events against available
plans to find those that match the event. If there are multiple plans available, it
then chooses one or more to execute. This selection is performed by the Meta-
level reasoning, which is extensible to allow various plan selection policies to

31

Figure 2.5: Jadex execution model (taken from [135]).

be integrated with the system. Selected plans are considered to be ready for
execution.

The Scheduler selects ready plans and executes them step-by-step. Execution
continues until a plan explicitly waits or substantially alters the internal state
of the agent. When this occurs, any events generated by such a change are fed
back into the Event List to be processed by the Dispatcher.

An example of Jadex code is now presented. This is taken from an example of
an agent for a “blocks world” problem [135]. In this type of problem, a number
of stackable coloured blocks are placed on a table and an agent is required to
achieve particular configurations. In the first part of the agent definition, the
beliefs of the agent are defined. This is done using the following code:

32

1 <beliefs>

2 <belief name="table" class="Table">

3 <fact>new Table()</fact>

4 </belief>

5 <beliefset name="blocks" class="Block">

6 <fact>

7 new Block(new Color(240,16,16),$beliefbase.table)

8 </fact>

9 <fact>

10 new Block(new Color(16,16,240),$beliefbase.table.allBlocks[0])

11 </fact>

12 <fact>

13 new Block(new Color(240,240,16),$beliefbase.table.allBlocks[1])

14 </fact>

15 </beliefset>

16 ...

17 </beliefs>

Within the <fact> tags, Java objects are created to represent the entities about
which the agent has beliefs. The type of object that should be contained in
each is defined in the <belief> or <beliefset> tag. Each belief or belief-
set is also given a name by which it can be identified elsewhere in the agent
definition. For example, the new Block object created on line 7 is placed on
the Table object previously created in line 3. This is accessed by means of the
$beliefbase variable, with which the table can be referenced by the name it
was given in line 2.

The next extract shows the definition of an achievement goal. It is defined as
follows:

1 <goals>

2 <achievegoal name="clear">

3 <parameter name="block" class="Block" />

4 <targetcondition>$goal.block.isClear()</targetcondition>

5 </achievegoal>

6 ...

7 </goals>

As with beliefs, goals are also given names to identify them. This goal is
defined with a parameter named block that must be a Block object (defined
in Java). This goal is intended to “clear” a particular block by ensuring that

33

there are no other blocks stacked on it. The condition that the goal is intended
to achieve is specified in the <targetcondition> tag. The $goal.block
variable refers to the parameter that was defined in the previous line. The
isClear() method (invoked on the Block object) should return true when
the goal has been achieved.

The final extract relates to the definitions of plans that are intended to achieve
goals. Its code is as follows:

1 <plans>

2 <plan name="clear">

3 <bindings>

4 <binding name="upper">

5 select $upper from $beliefbase.blocks where

6 $upper.getLower()==$event.goal.block

7 </binding>

8 </bindings>

9 <body>new StackBlocksPlan($upper, $beliefbase.table)</body>

10 <trigger><goal ref="clear" /></trigger>

11 </plan>

12 ...

13 </plans>

This plan is intended to achieve the “clear” goal defined above (the adoption
of this goal can be seen as the trigger of this plan in line 10). A new variable is
created with the plan by means of a <binding> tag. Binding a value to this
variable (called $upper) is done via an SQL-style query of the agent’s belief
base. It is selected as a block that is above the block that the goal is intended to
clear. The getLower() method of the Block class will return the block below
the block it is invoked on and $event.goal.block relates to the block that
was passed as a parameter to the “clear” goal that triggered this event.

The body of the plan instantiates another Java class that defines the steps re-
quired to carry out the plan. The variables that were bound in this Jadex defin-
ition are passed to its constructor. This can be seen on line 9.

2.4.5 2APL

2APL is a formally-specified, BDI-based AOP language, with a focus on MASs
that share access to common external environments [42]. It extends and modi-

34

fies the earlier 3APL language, which was aimed more at the creation of indi-
vidual agents [43, 86].

For individual agents, implementation is by way of beliefs, goals, actions,
plans events and rules. Beliefs and goals are declarative, with plans operating
in an imperative style. Each agent is assumed to be situated in an environ-
ment (modelled by Java objects). An agent can monitor its environment either
actively (through a sensing action) or passively (by means of the environment
generating events).

Rules can generate plans to achieve goals, process events (including the receipt
of messages) or catch and repair failed plans. Thus, 2APL agents can behave
reactively if the raising of events triggers rules that result in particular actions.
Proactive, deliberative behaviour is also possible through the rules that are
aimed at achieving goals. Goals persist until they are achieved, meaning that
if a plan fails to achieve the goal for which it was executed, another plan can
be selected for execution instead. This can continue until the goal has been
achieved.

A key feature of 2APL is its hybrid of declarative and imperative program-
ming. The beliefs and goals of an agent can be queried, with the results avail-
able for use in actions and plans to modify the external environment. Inform-
ation gleaned from observation of the environment can similarly be used to
update the agent’s beliefs and goals.

For multi-agent concerns, a separate specification language allows a developer
to specify what agents need to be created and what environmental components
each agent requires access to.

2APL makes use of FIPA ACL for inter-agent communication. This is done
by making an action available for agents to send individual messages, with
incoming messages treated as events. The distributed mode of 2APL is imple-
mented as a layer on the JADE middleware platform (see Section 2.4.4).

There are numerous elements to a 2APL agent, many of which are illustrated
in the code samples that follow. The context for these examples is a virtual
world where trash and gold are placed in particular locations. The role of the
agents is to clean the trash from the world and collect the gold.

A 2APL agent typically begins with the declaration of some initial beliefs and
belief rules. These exactly follow the syntax of Prolog facts and rules. In the
following example, the agent believes that trash exists in a particular location,
and a rule states that the world is clean if there is no trash in any location.

35

1 Beliefs:

2 trash(2,5).

3 clean(blockWorld) :- not trash(_,_).

Goals are also declared at the beginning (though agents can adopt new beliefs
and/or goals during execution). The following example shows an agent with
two goals, separated by a comma. The first indicates that it wishes to bring
about a situation whereby it possesses 5 units of gold and the world is clear of
trash. The second simply desires the collection of 10 gold pieces.

1 Goals:

2 hasGold(5) and clean(blockWorld), hasGold(10)

A belief update rule takes the form of a Hoare triple [89]. It indicates what the
effect of an action on the goal base will be. Each belief update rule consists of
three items: a precondition, an action and a postcondition. In the following
example, the action becomes possible if it believes that trash is present at a
position given by some co-ordinates (X,Y) and that its own position is the
same. As with Prolog and AgentSpeak(L), capital letters indicate variables. In
this context, executing the RemoveTrash() action will result in the outcome
that trash is no longer present that that location.

1 BeliefUpdates:

2 {trash(X,Y) and pos(X,Y)} RemoveTrash() {not trash(X,Y)}

Plans provide a mechanism to accomplish more complex tasks by combining
multiple basic actions. Plan operators include a sequence operator, conditional
choice operator, conditional iteration operator and a non-interleaving oper-
ator. The following examples illustrates a 2APL plan. The brackets around the
first two actions creates an atomic plan that ensures that the ChgPos(5,5)

is executed immediately after (the semicolon is the sequential operator) the
agent enters the world. The enter action is an external action provided by
the blockworld environment.

1 Plans:

2 [@blockworld(enter(5,5,red),L);ChgPos(5,5)]

36

A Planning Goal rule (PG-rule) causes a plan to be generated when a partic-
ular mental state of the agent occurs. PG-rules consist of a head (consisting
of goal expressions), a condition (beliefs that should be present) and a body
(the actions to perform). In the following example, if the agent has the goal to
clean some space (clean(R)) and it has a belief relating to its own position
(pos(X1,Y1)) and the location of some trash (trash(X2,Y2)), it should per-
form the actions in the plan. In this case, that involves sequentially travelling
to the location of the trash and executing the RemoveTrash() action.

1 PG-rules:

2 clean(R) <- pos(X1,Y1) and trash(X2,Y2) |

3 {[goTo(X1,Y1,X2,Y2);RemoveTrash()]}

Procedure Call rules (PC-rules) are defined in the same way, except the head of
the rule is not a goal query. Instead, it is used to react to the receipt of messages
or other events.

Another type of plan rule, known as a Plan Repair rule (PC-rule) is used to
replace a failed plan with another, if certain conditions hold. For example, a
plan to move two steps to the east in a grid world can be replaced by a plan
to first travel one step north, then move two steps east and then return to the
south. This plan would be used to avoid an obstacle that prevents direct travel
to the east.

Figure 2.6: The deliberation cycle for 2APL agents (taken from [42])

37

In order to allow for integration with various external environments, actions
can be implemented as Java classes. These can be invoked from within the
2APL agent in the same way as built-in actions.

The deliberation cycle of 2APL is shown in Figure 2.6. The agent only acts
whenever unhandled events or messages are present. When this is the case,
plan generation rules are used to generate appropriate plans to handle those
events. Next, the first action of all generated plans are executed. This is fol-
lowed by the processing of external, internal and message events respectively.
This cycle then operates in an iterative fashion for the lifetime of the agent.

2.5 Summary

This Chapter is the first of three that review the state-of-the art in the area of
AOP. A number of potential elements of agency are considered, with the weak
notion of agency proposed in [167] being adopted. This defines an agent as
a computational entity that has the properties of autonomy, social ability and
exhibits both reactive and proactive behaviour. Additional elements that could
be included in a definition are omitted due to the nature of this work.

Numerous efforts have been undertaken to create AOP languages, toolkits and
frameworks. This Chapter outlines a number of these, concentrating on active
projects that are currently in use. From this analysis, it is clear that a myriad
of different mental models are in active use amongst the agent programming
community. Most AOP languages make use of a subset of beliefs, goals, de-
sires, intentions, commitments and capabilities as part of their mental mod-
els. For any technology seeking interoperability between diverse languages or
frameworks, no particular internal model can be safely assumed.

As the key focus of this thesis is on the communication between agents,
Chapter 3 surveys the efforts that have been made to date in the area of mod-
elling agent communication. This is done both by attempting to model indi-
vidual communications and their effects and also by modelling more complex
communication consisting of a lengthier sequence of interactions.

38

CHAPTER

THREE

Agent Communication

3.1 Introduction

The ability of intelligent agents to interact socially is widely acknowledged as
a key feature of a multi-agent system [152, 162, 167]. This ability allows groups
of agents to collaborate in solving problems and performing tasks that would
be beyond the ability of a single agent.

To facilitate this inter-agent communication, great efforts have been made to
standardise Agent Communication Languages (ACLs). These are aimed at
providing a standard mechanism by which agents can interoperate and be mu-
tually understood. ACLs tend to be based on the principles of speech act theory,
where the act of speaking is considered to be an action that has an effect on the
world [102].

Early research tended to concentrate on the particular effects of individual
messages. It is only after the semantics of these were decided upon that at-
tention moved towards the concept of agents engaging in structured conver-
sations consisting of multiple related messages.

This Chapter provides an overview of agent communication, from its origins
in speech act theory to later advances in conversation management. This
serves as the background against which the research discussed in this thesis
has been conducted.

3.2 Standalone Agent Communication

A discussion of agent communication must necessarily begin with standalone
communication. In this instance, “standalone” refers to the fact that individual

39

communications are unrelated to others with all messages being sent individu-
ally. There are two principal approaches to research on agent communication
languages [87]. The first is based on speech act theory and the other is based
on social semantics. These are discussed in the following Sections.

3.2.1 Speech Act Theory

Speech act theory underpins a major strain of ACLs. This theory emerged
from the work of Austin, who noted that some utterances have similarities to
physical actions, in that they have an effect of the state of the environment [5].
Examples of such utterances include a declaration of war, a pronouncement of
marriage or the naming of some entity.

In Austin’s analysis, he identifies three aspects of any speech act:

• Locutionary act: the act of making an utterance (e.g. “please make some
tea”).

• Illocutionary act: the action performed in saying something (e.g. “he re-
quested me to make some tea”).

• Perlocution: the effect of the act (e.g. “he got me to make tea”).

This work was expanded upon by Searle, who identified five types of illocu-
tionary act [148]:

• Representatives/Assertives: This presents a proposition as representing the
state of the world. Such assertions can be true or false. When making an
utterance with an assertive force, it is not necessary for the speaker to be
truthful. It is the hearer’s belief that dictates whether the act is taken as
true or false.

• Directives: This is an attempt to get another to bring about some state of
the world and includes such speech as requests, orders, instructions, etc.
There is no requirement on the hearer to comply with the directive.

• Commissives: This commits the speaker to future action, such as promises
and verbal contracts. A speech act with commisive force is a statement
of an intention to perform some action in the future.

40

• Expressives: This covers those speech acts that express something about
mental state. Examples include expressing regret (apologising), appreci-
ation (thanking) or condolences.

• Declaratives: Speech acts with declarative power themselves bring about
a change in the world. In this situation, an utterance declaring a state of
the world that did not exist beforehand may have, in itself, the effect to
bring this state about.

A speech act can be further broken into two core components: a performative
verb and a propositional content. These are illustrated by examples in Table 3.2.1.

Table 3.1: Types of Speech Acts.
Speech Act Performative Content
Please close the door request the door is closed
The door is closed inform the door is closed
Is the door closed? inquire the door is closed

Much research on communicating agents has been based on the principles of
speech act theory. The act of speaking is intended by an agent to have some
effect on the world. However, a distinction can be drawn between physical
actions and speech acts. For a speech act, the specific part of the world that the
speaker wishes to modify is the mental state of other agents [159].

The speech acts themselves can be categorised according to their illocutionary
force (i.e. the type of utterance) . Examples of this include a statement such as
“the door is open”, which is intended to “tell” or “inform” another agent of a
fact. The perlocutionary force represents the intentions of the speaker in making
the utterance in terms of the effect they wish to bring about. For instance,
the perlocutionary force of “the door is open” is that the listener would come
to believe that the door is open. In agent communication, the illocutionary
forces are explicit. This is typically done through the use of labels included
in the messages to state what this illocutionary force is. These are known as
performatives [159].

Shoham’s original AGENT0 language made use of speech act theory for com-
munication. It featured only three performatives: INFORM (to tell another
agent of a fact), REQUEST (to ask another agent to perform some action) and
UNREQUEST (to cancel a prior request) [149].

Later researchers have identified other performatives that they consider to be
useful for agent communication, and have included these in various message

41

standards. The two most popular ACLs developed are the Knowledge Query
Manipulation Language (KQML) and the ACL developed by the Foundation
for Intelligent and Physical Agents (FIPA). Both of these are based on speech
act theory and include performatives as a core aspect of each message. These
are discussed in the following Sections.

3.2.1.1 KQML

The Knowledge Query and Manipulation Language (KQML) was the first lan-
guage to gain widespread adoption as an ACL [152]. However, it was not
originally developed with agent programs in mind. As research in the area of
Artificial Intelligence intensified in the 1980s, it was felt that standardisation
was required to facilitate the storage, reuse and communication of knowledge
between intelligent computational entities.

The Knowledge Sharing Effort (KSE) was a project sponsored by the Defense
Advanced Research Projects Agency (DARPA) in the US. Its aim was to “de-
velop the technical infrastructure to support the sharing of knowledge among
systems” [122].

In the model adopted by the KSE, diverse knowledge bases require a mechan-
ism by which they can exchange knowledge. This is done by way of proposi-
tional attitudes. An example of a propositional attitude supplied by Labrou is
< a, fear, rainingnow > [102]. This indicates that a knowledge base identified
as a has the propositional attitude of fear relating to the proposition that it is
currently raining. A finite set of attitudes is permitted, including believing,
asserting, fearing, wondering and hoping.

In order for this system to be standardised, three languages were developed.
The Knowledge Interchange Format (KIF) was created to allow the proposi-
tions themselves to be represented [79]. Ontolingua was designed to specify
the ontology of the prepositions [56]. Finally, the language developed to model
the propositional attitudes was the Knowledge Query and Manipulation Lan-
guage (KQML). Using this, an intelligent entity could express to another its
attitude towards a particular proposition.

As the area of intelligent agents gained more traction, KQML was adopted as
a suitable language for communication [102, 103]. A KQML message contains
three principal layers:

• The content layer contains the actual content of the message. The KQML

42

specification does not restrict this to any particular representation lan-
guage, although many users of KQML tended to make use of KIF for
message content.

• The communication layer includes the communication parameters such as
the identity of the sender and receiver along with an identifier for the
message.

• The message layer encodes a message that is to be exchanged. This in-
cludes information about the content language used and the ontology
that describes the content. It also includes a performative, which specifies
the speech act for the message. This indicates whether the message is
intended as an assertion of fact, a query, a command or another type of
speech act chosen from the set of primitive KQML performatives.

KQML features a predefined set of reserved performatives. However, this was
not intended to be a closed set, with customisation being permitted. Agents
are not required to be capable of responding to every possibly performative.

According to Singh, attempts to standardise agent communication using
KQML were unsuccessful [152]. This was due to the emergence of a variety
of incompatible KQML dialects, which occurred for two principal reasons:

1. The sending agent may use application-specific terms that are not under-
standable to the recipient.

2. Basic communication components are not uniformly understood. This
may be attributed to a lack of formal semantics.

The semantics of KQML performatives were not included in the original
specification and these were added later by the community (for example,
in [103, 104]). These semantics were defined in terms of the mental states of
the sender and receiver of the communication. These take the form of precon-
ditions (regarding the mental state of the participants before a communication
is sent) and postconditions defining the effects of the communication. An ex-
ample of the semantics for the tell performative (used to inform another agent
of a fact) is shown in Figure 3.1.

In this figure, agent S wishes to tell agent R that a proposition X is true, using
the construct tell(S,R,X). For S to send such a message, the preconditions
must be satisfied. Firstly, S must itself believe that X is true (as such it is not

43

• Pre-conditions on the states of S (sender) and R (receiver):

◦ Pre(S) : bel(S,X) ∧ know(S,want(R, know(R, bel(S,X))))

◦ Pre(R) : intend(R, know(R, bel(S,X)))

• Post-conditions on S and R:

◦ Pos(S) : know(S, know(R, bel(S,X)))

◦ Pos(R) : know(R, bel(S,X))

• Action completion:

◦ know(R, bel(S,X))

Figure 3.1: Semantics for the KQML tell performative (taken from [103]).

permitted to lie) and also that it is aware that R wants to know this informa-
tion. R intends to know whether or not S believes X to be true.

Following the sending of the message, the mental state of S includes the know-
ledge that R now knows of the belief of S in X . The agent R has satisfied its
intention and now knows that S does believe X . The “action completion” in-
dicates the overall desired effect of the communication. Sometimes this may
require further messages to be exchanged. In the case of the tell performat-
ive shown in Figure 3.1, this is the same as the second post-condition. How-
ever, the overall effect of another performative may require a response. For
example, an ask-if message is intended to be an enquiry as to the truth of a
proposition. The desire is to receive a reply (with a tell performative) that
contains this information.

This standardisation effort included an attempt to specify legal sequences of
performatives that would make up a longer conversation. This takes into ac-
count those performatives that are suitable for beginning a conversation and
continuing existing conversations [103].

3.2.1.2 FIPA ACL

A number of criticisms of KQML resulted in the development of FIPA ACL be-
ginning in the late 1990s. The Foundation for Intelligent and Physical Agents
(FIPA) was founded in 1996 as a standards organisation for agents and Multi
Agent Systems. It has been part of the IEEE Computer Society since 2005. FIPA
ACL is the agent communication language developed by FIPA.

44

Many features of FIPA ACL are similar to those of KQML. It also draws on
speech act theory, with each message specifying a performative1 in addition
to its content. The specifications also outline the effects of message exchange
on the mental states and attitudes of the sending and receiving agents through
formal semantics [68].

The FIPA ACL semantics specify feasibility preconditions and rational effects for
each performative. Feasibility preconditions describe the conditions necessary
for a message to be sent. The rational effect is the effect that an agent can
anticipate occurring as a result of sending a message. As it may not be possible
for the recipient of a message to make this come about, this is not a guarantee.
However, it may be used by the sender in deciding when to communicate.
A strictly compliant implementation of FIPA ACL requires that the relevant
feasibility preconditions must be satisfied for an agent to be permitted to send
a message.

Although the basic principles of FIPA ACL are very similar to those of KQML,
they are not compatible on account of the differing semantics they employ for
equivalent performatives [105]. For example the KQML tell performative
and FIPA ACL’s inform performative both have the intention of allowing an
agent make another agent aware of the truth of a proposition, though these
have different semantics. However, approximate mappings for loose transla-
tions of these ACLs have been implemented.

A criticism of KQML is that it lacks organisation at the conversation level and
so the messages it transmits are without context [40]. For this reason, the FIPA
ACL specification allows for conversation-id and protocol fields to fa-
cilitate individual messages being grouped together into protocols [66].

Chapter 4 presents a more detailed analysis of the FIPA Agent Communication
standards.

3.2.2 Criticisms of ACLs

Although both KQML and FIPA ACL have gained some traction in the agents
community, they are not without their critics. Hindriks notes that FIPA ACL
and KQML have both been “extensively criticised” on the grounds of com-
plexity and verifiability [87].

1FIPA’s specifications call these “communicative acts”. For consistency, these are referred
to as “performatives” in this work.

45

The complexity issue stems from the high number of performatives that
are available, combined with the fact that subtle semantic differences exist
between them.

The problem of verifiability is a result of both ACLs specifying unverifiable
preconditions for each message [152, 159]. For example, a FIPA message with
the performative inform is intended to indicate to a recipient that a propos-
ition given as the content of the message is true. The FIPA ACL standard
requires that the sender of the message should itself believe the truth of the
given proposition before communicating this to another agent. However, the
recipient has no way of verifying whether this precondition holds.

With regard to the semantics of KQML and FIPA ACL, a number of re-
searchers express concern regarding the suitability of the existing work in this
area [133, 152, 166]. Although these agree that formal semantics are important,
existing semantics for ACLs are overly focussed on the idea of mental agency.
Semantics of ACLs such as KQML and FIPA ACL tend to be expressed in terms
of mental concepts such as beliefs, desires and an agent’s knowledge. In ef-
fect, verification that an ACL has been employed correctly requires agents to
be capable of ascertaining each other’s mental state via some form of mind-
reading. This is considered to be impractical and unrealistic, as this supposi-
tion has never been true for human interaction.

An additional criticism by Wooldridge is that the computational complexity
of logically verifying whether an agent implements the semantics of an ACL
is a “major obstacle”, as the semantics of communication languages are often
expressed in a multi-modal logic [166].

Some agent programming languages have taken a more pragmatic approach
to agent communication in recent times. In many implementations (e.g. Agent
Factory [36], 2APL [42] and 3APL [43]), the semantics are ignored altogether.
Here, the only effect on the mental model of the agents is that the receiver has
a belief that a message has been received and the sender acquires a belief that
it has been sent.

3.2.3 Social Semantics

Social Semantics are proposed as an alternative method of viewing agent com-
munication, addressing some perceived shortcomings of ACLs such as FIPA
ACL and KQML [153].

46

This typically models the effect of messages in terms of the commitments that
are created as a result of communication. In this context, a commitment is a
directed obligation, where one agent (a debtor) is obliged to do something for
another (a creditor).

The semantics of this model are based on the creation of commitments by way
of message passing, and as such are more objective than mentalist, subject-
ive semantics of FIPA ACL and KQML. An example of this is a message that
contains a promise performative. Objectively, sending such a message commits
the sender to the accomplishment of some task. This can be verified by an
independent observer that is privy to the communication. Using subjective
mentalist semantics, however, the sender commits that it intends to perform
the task. As discussed in the previous Section, verification of the intentions
of an agent requires knowledge of its inner workings which is impossible in
many circumstances.

3.3 Conversation Models

Communications frequently do not occur in isolation. Offers for service are
accompanied by acceptance, calls for proposals are accompanied by bids and
queries are followed by the provision of the information required. In order to
allow this type of complex communication to occur, some model of a conver-
sation is necessary. Many different formalisations of conversations have been
proposed. In analysing these, it is important to distinguish between prescriptive
and emergent conversation policies [124].

A prescriptive conversation policy is based on design-time engineering of ac-
ceptable sequences of messages that may be exchanged between agents. We
refer to these prescriptive conversation policies as protocols.

Emergent approaches allow agents to decide for themselves how interaction
should occur. This is frequently based on their understanding of the effects of
communicative acts, as specified by their respective semantics.

A number of competing models are discussed in the following Sections, in-
cluding discussion of their benefits and disadvantages. This informs the
choice of a model for the work presented in this thesis, which is introduced
in Chapter 5.

47

3.3.1 Finite State Machines

Finite State Machines (FSMs) are one of the most popular models used for
handling interaction [170]. State transition diagrams were being used as far
back as 1986 to model conversations [164].

The principal advantage of such a model is that they allow a variety of beha-
viours to be expressed, while remaining conceptually simple. Simplicity and
ease of implementation are gained at the cost of the expressiveness of the pro-
tocol [39, 41].

Criticisms of this model include the observation that while FSMs dictate the
syntax of a conversation, they tend to omit semantics, which can lead to rigid
executions [39, 170]. Poorly-designed FSMs are also subject to problems with
concurrency in systems where a consistent message ordering is not guaran-
teed [39]. It is further argued that specifying interaction protocols as a permit-
ted sequence of communications is over-constrained and that a higher level of
abstraction is more suitable for modelling conversations amongst autonomous
agents [151].

A typical view of a conversation as an FSM involves a conversation being in
some state, with actions taken by the agents resulting in a transition between
states. In most situations, this action involves the sending of a message, al-
though other actions (such as silence) are capable of causing changes in state
in some models.

A competing approach models each participating agent’s view of the conver-
sation as an FSM, with their own reactions to the receipt of messages being an
integral part of the model.

There is some diversity in the literature with regard to the naming of this
type of model. In some works they are described as “Finite State Ma-
chines” [39, 170]. Elsewhere, they can be described as “Deterministic Finite
State Automata” [39] or “Finite State Diagrams” [133]. For consistency, the
phrase “Finite State Machine” (FSM) will be used throughout this work.

Different researchers have implemented a variety of approaches to FSM con-
versation modelling, each of which has its own features. The following Sec-
tions outline a number of related, yet distinct, approaches.

48

3.3.1.1 COOrdination Language(COOL)

The COOrdination Language (COOL) is a language that provides a structured
conversation framework for agents [7, 8, 9]. A conversation between two
agents is modelled as an FSM, where transitions between states occur as a
result of ACL messages (either FIPA ACL or KQML) being sent between the
participating agents. The transition that has occurred may be identified by ref-
erence to the performative of the message that triggered it. When participating
in a conversation, each agent follows its own “conversation plan” (referred to
as a “conversation class” in [7]), which defines the states that the conversation
may be in, its start and end states, any variables that may be used during the
execution of the conversation, and the “conversation rules” necessary to cause
the conversation to advance. Each conversation rule represents an action (or
set of actions) that an agent may take in a particular state. The choice between
available rules is made using a controller component. Mechanisms exist to
suspend conversations (pending completion of related conversations) and en-
force timeouts. Additionally, protocols may be marked as “friends”, meaning
that they are related and may share common variables. An example of this
would be if a situation arises during one conversation that requires further
information that a new conversation of another type may help to provide.

A key feature of COOL is that each agent follows its own conversation plan,
since the actions it takes are inherently linked to the rules contained within this
plan. Thus, communicating agents have different models of the conversation
they are following, which means that additional work is required to determine
whether the conversation plans of two agents are compatible.

The messages exchanged by participating agents contain a conversation iden-
tifier that aids agents in linking related communications. However, no conver-
sation plan is specified, as agents use separate plans. This has the consequence
that whenever a new conversation is begun, the plan that should be followed
is not immediately apparent to the recipient of the initial communication. To
help in solving this problem, initiating agents may communicate their inten-
tions in beginning a conversation, with the respondent matching this against
the conversation plans it possesses, in order to identify a suitable candidate
plan to follow.

Figure 3.2 shows an example of a COOL conversation plan. This includes cer-
tain information about how the conversation should be conducted, such as the
ACL to be used (KQML in this case) and also defines the conversation states

49

(def-conversation-plan ’customer-conversation
:content-language ’list
:speech-act-language ’kqml
:initial-state ’start
:final-states ’(rejected failed satisfied)
:control ’interactive-choice-control-ka
:rules ’((start cc-1)

(proposed cc-13 cc-2)
(working cc-5 cc-4 cc-3)
(counterp cc-9 cc-8 cc-7 cc-6)
(asked cc-10)
(accepted cc-12 cc-11)))

Figure 3.2: A COOL conversation plan (taken from [9]).

that act as the initial and final states. The :rules slot indicates a list of con-
versation rules that can be applied for each state in the conversation. These
named rules define actions that are appropriate for the agent to perform in a
given conversation state. For example, when the working state is reached,
rules named cc-5, cc-4 and cc-3 become available. The choice of which
rule to execute depends on the control mechanism chosen (in the :control
field).

These conversation rules will typically include the sending of a message to
advance the conversation, along with any other actions that the agent needs to
undertake and updating any relevant variable bindings within the agent itself.
From Figure 3.2 it can therefore be seen that the definition of a conversation is
inherently integrated with the behaviour of the agent itself.

The Java-based Agent Framework for Multi-Agent Systems (JAFMAS) is an-
other example of a system that makes use of COOL-like conversation plans to
make interaction a core aspect of the system [28].

3.3.1.2 AgenTalk

AgenTalk is designed as a programming language capable of implementing
protocols and agents that behave according to these protocols. Its focus is more
on the interaction between agents than on their internal complex logic. The
representation of protocols is done by means of an FSM that is extended to
allow variables [100, 101].

In AgenTalk, the execution of a protocol requires a script that contains the

50

protocol definitions along with an agent program that defines the actions as-
sociated with the agent. The script determines when each action should be
invoked in order to follow the protocol. Mixing the same scripts with different
agent programs can lead to different behaviours that follow the same protocol.

Each script contains the hooks for one of the agent roles involved in a conver-
sation. This means that, like COOL, a full view of the protocol can only be
found by examining all the roles involved.

Figure 3.3: Inheritance in AgentTalk (taken from [100]).

A novel feature of AgenTalk is that inheritance is supported for protocols to
allow for the incremental definition of protocols. An example of this can be
seen in Figure 3.3. This shows two protocols illustrating AgenTalk’s inherit-
ance. The first protocol is for a simple contract net protocol whereby a man-
ager agent sends an announcement, receives bids and later awards the con-
tract to the successful bidder, rejecting the others. The second protocol extends
this process to allow the agent to decide against inviting bids, instead directly
awarding a contract to an agent that is already known. In this situation, where
a contract net is desired, the inherited protocol is invoked in exactly the same
way as in the original imported protocol. This promotes the re-use of existing

51

protocols and saves on a duplication effort that may introduce errors and/or
inconsistencies.

3.3.1.3 JADE

Although JADE does not specifically support AOP languages (see Sec-
tion 2.4.4), it does support the implementation of conversations that make use
of FIPA ACL and so should be included in this Section [14].

The tasks carried out by JADE agents are implemented using one or more
types of behaviour, of which several are provided by the platform. Ex-
amples of behaviours include a SimpleBehaviour (simple atomic actions),
SequentialBehaviour (where multiple sub-tasks are executed sequen-
tially) and ParallelBehaviour (where multiple sub-tasks are executed con-
currently). Of particular interest to the modelling of agent conversations is the
FSMBehaviour, which schedules sub-tasks to be executed by reference to a
specified FSM.

The jade.proto package contains role behaviours for a variety of the FIPA
standard protocols (these are discussed in detail in Chapter 4). Roles are
provided for both an initiator agent and a responder agent. This package
provides the behaviours necessary for the implementation of the protocol,
with the programmer required to extend the provided behaviours to encom-
pass the application-specific handling of the various steps in a protocol. Most
of the behaviours provided are based on the generic FSMBehaviour.

With each of these interaction protocol implementations, although the protocol
is modelled as an FSM and an FSMBehaviour is used to implement it at the
agent level, these relate to the internal state of the agent as it proceeds through
a conversation, rather than the state of the conversation itself. As these are gen-
erated at compile-time, the agent lacks runtime awareness of conversations, as
it is merely following precompiled behaviours.

An Eclipse plugin exists to implement conversations in JADE [47]. This models
interaction protocols as FSMs, ultimately generating JADE behaviours based
on the FSMBehaviour class.

3.3.1.4 Jackal

Jackal is a Java-based package that facilitates the development of agents com-
municating via KQML [41]. A key feature of Jackal is its use of conversations

52

as the unit of communication between agents.

The approach in Jackal is distinguished from that of COOL and AgenTalk in
that Jackal imposes a clear separation between the messages involved in the
conversation and the actions undertaken by agents as a result of communica-
tion. This can be seen in Figure 3.4, which shows an example of a conversation
template of the type used by Jackal.

// Conversation Template
// Convention: Inital and accepting states all caps,
// other states initial caps,
// arc-labels lower case.
(conversation
(name kqml-ask-one)
(author "R. Scott Cost")
(date "3/4/98")
(start-state START)
(accepting-states TOLD)
(transitions
(arc (label ask-one) (from START) (to Asked) (match "(ask-one)"))
(arc (label tell) (from Asked) (to TOLD) (match "(tell)"))
(arc (label deny) (from Asked) (to TOLD) (match "(deny)"))
(arc (label untell) (from Asked) (to TOLD) (match "(untell)"))
(arc (label sorry (from Asked) (to TOLD) (match "(sorry)"))
(arc (label error) (from Asked) (to TOLD) (match "(error)"))))

Figure 3.4: A Jackal conversation template (taken from [41]).

Figure 3.5: Finite State Machine representing the KQML “ask-one” conversa-
tion in Jackal (taken from [41]).

As with COOL, the initial state (here described as the start-state) and ter-
minal states (accepting-states) are explicitly specified at the beginning of
the protocol definition. It can also be seen from this Figure that transitions

53

between states are identified only by the performative in the messages ex-
changed, and not the content they contain.

In Jackal, conversations are used as a form of Application Programming Inter-
face (API) for agents. An agent can describe its interface by identifying a set of
conversations in which it is capable of engaging. This forms an Abstract Agent
Interface (AAI) so that other agents can become aware of how, for example, a
service offered by the agent may be utilised.

3.3.1.5 InfoSleuth

FSMs are also used in the InfoSleuth system [124]. An example of a graphical
representation of an InfoSleuth protocol can be seen in Figure 3.6. Transitions
are defined only as KQML performatives: the message content is not used.
Like Jackal’s representation, the notion of a conversation is separate from the
internal workings of the participating agents themselves.

Figure 3.6: FSM describing an InfoSleuth “subscribe” protocol (taken
from [124]).

Figure 3.6 illustrates the synchronisation problem associated with the use of
FSMs. In this Figure, performatives sent by the conversation’s initiator are
shown in uppercase, with other participant’s messages shown in lowercase.
After the initial SUBSCRIBE message, either agent can send the next message
from the resulting state. In this event, it is not a problem, since the initiator
can only send a DISCARD message, which ends the conversation. However,
the model does not prevent careless protocol designers from encountering this
problem.

54

3.3.1.6 KAoS

In the KAoS multi agent framework, communication is based on speech acts
and is organised into conversations [22]. Although it does not use a standard
ACL such as KQML, its messages are based on illocutionary acts (described as
“verbs”), which are equivalent to the performatives seen in KQML and FIPA
ACL. Messages can be exchanged only within the context of conversations and
do not stand alone.

KAoS protocols are defined in advance as FSMs. An example of a visualisation
of a KAoS FSM can be seen in Figure 3.7. A number of features can be seen
here, some of which are common to other FSM representations and some of
which show differences in approach. Firstly, unlike the approaches of COOL
and Jackal, the FSM represents the communication only and does not con-
tain any reference to the internal reasoning of the agents themselves. Thus,
this single diagram can be used to verify whether the conversation follows the
specified protocol.

Figure 3.7: KAoS conversation policy (taken from [22]).

Each conversation begins with a transition (message) rather than commencing
in some initial state. Terminal states are defined as those without any outgoing
transitions. These are marked with heavier borders in Figure 3.7. Transitions
are labelled with the sender and recipient agents, along with the performative
the message is expected to contain. Further details of the message, such as the
specific content, are omitted. In addition to transitions triggered by the send-
ing of messages, it can be seen that silence also functions as a valid transition

55

(e.g. between states 1 and 4). When initiating a conversation, the initiator must
specify the initial verb and the conversation policy. The recipient responds to
indicate whether it is capable of processing these.

3.3.2 Coloured Petri Nets

Cost et al. argue that FSMs are not sufficient to model complex interac-
tions, particularly those that require concurrent communication [40]. Instead,
they propose the use of Coloured Petri Nets (CPNs) to model conversations
between agents. They argue that these have superior support for concurrent
communication while sharing the advantages of being presentable in an intuit-
ive graphical fashion, being simple to implement and having a variety of tools
and techniques available for formal analysis and design. CPNs are another
example of a prescriptive protocol definition.

A Petri Net (PN) is a formal model for representing concurrency [1]. It is a
type of directed, connected, bipartite graph. Each node in the graph is either
a place (places can be occupied by tokens) or a transition (which has input places
and output places). A transition is considered to be enabled when all places
connected to it are occupied by tokens. When enabled, a transition can fire,
which removes one token from every input place and puts a token in each
output place.

A CPN is an extension of this model in which tokens have data associated with
them. In the case of using a CPN to represent an interaction protocol, this data
includes the performative of a message, its sender and receiver, its message
content and the contents of its reply-with and in-reply-to fields (these
are described in more detail in Chapter 4). Thus the sending of messages res-
ults in the creation of tokens in the CPN. When all requisite messages have
been sent, a transition can fire. In situations where multiple messages need to
be sent to achieve a particular state, the ordering of messages is not important.
This handling of concurrent communication is seen as the principal advantage
of CPNs over FSM representations.

Figures 3.8 and 3.9 illustrate a simple KQML register protocol. An initiator
begins by sending a register message to another. The receiver has three
available responses: the anticipated response (reply), notification that the
initial message was malformed (error) or that some other problem has arisen
(sorry). Figure 3.8 models this protocol as an FSM whereas Figure 3.9 shows
its translation into a “generally equivalent” CPN [40].

56

Figure 3.8: FSM diagram of a KQML register protocol (taken from [40]).

Figure 3.9: CPN diagram of a KQML register protocol (taken from [40]).

3.3.3 Agent UML

Agent UML was developed as an extension to the existing Unified Modelling
Language (UML), a widely-used industry standard for the design of software
systems. The intention was to bridge the gap between the academic work
done in the field of MASs with existing industry standards, with a view to
promoting the adoption of MAS technology in industry through the provision
of familiar tools and paradigms [10, 128, 129].

A key contribution of this effort was the development of Agent UML spe-
cifications for interaction protocols. This describes the admissible sequence
of messages that may be exchanged between agents fulfilling different roles
and places constraints on the messages’ contents. The protocols should also be

57

consistent with the semantics of the communicative acts in the messages.

A diagram consists of an agent lifeline for each of the roles participating in the
interaction, which relates to the time the agent spends playing that role rather
than to the actual lifetime of the agent itself. Depending on the nature of the
interaction, lifelines may split to show AND, OR or XOR parallelisms.

Messages are shown as arrows, and specify the required performative and any
arguments that are necessary to provide additional information. Constraints
and guards are possible also, to dictate the conditions under which messages
may be sent. Parallelism is also supported for message sending. Protocols
are designed to be modular, so as to support the nesting and interleaving of
protocols.

The protocol specifications say nothing about the internal reasoning pro-
cessing of agents in terms of how they decide to react to communications. Only
the communications themselves are contained in the specifications.

The Agent UML method of representing interaction protocols was the one
chosen by FIPA in defining its own library of standard agent protocols. These
are discussed in more detail in Chapter 4. The Agent UML diagrams repres-
enting these can be seen in Appendix A.

An extension to Agent UML was proposed in [53] whereby the inputs and
outputs of each operation were specified so as to allow agents to plug its
application-specific code into the interaction protocol to create a fully execut-
able implementation of the protocol.

3.3.4 Dooley Graphs

An alternative visualisation for agent interaction is a Dooley Graph [130].
This illustrates the interaction between agents and analyses the relationship
between individual communicative acts. For example, one message may be a
response to another (i.e. the receipt of the first message caused the subsequent
message to be sent) or a reply (where a response is communicated back to the
sender of the initial message).

Dooley graphs are created from running systems or simulations and as such
are most useful for analysing the behaviours that emerge from a community
of agents. This can be a useful tool in the continuing development of a MAS,
but is not intended to act as a formalisation of a protocol that is specified in
advance of the runtime of a system.

58

3.3.5 Global Session Types

Global session types are designed to specify multiparty interactions between
distributed components. This is done to verify the correctness of these com-
ponents in the way they interact [26, 91]. Although this representation was not
developed with MASs in mind, it has been applied in this domain [3]. Here,
global session types were used to verify that ongoing conversations were con-
sistent with an interaction protocol they represented. This was done in the
context of a move towards implementing a form of unit testing for MASs.

Like an FSM, a global session type is described in terms of states and trans-
itions, though there are differences in how these are treated. Transitions take
the form of messages to be exchanged, each of which contains a performat-
ive and some message content. The model used in [3] includes the ability for
message content to be typed, and for these types to be verified at run-time.
Content types can be simple atoms such as strings and integers, or more com-
plex Prolog-style terms consisting of functors and arguments.

There are four principal mechanisms that facilitate the definition of transitions
between states. A seq type allows for the definition of a valid sequence of
interactions. Where choice is used, any number of possible interactions are
specified, only one of which can be followed. A set of interactions that can be
performed in any order can be specified using fork and finally, recursion can
be used to allow for interaction loops. Care is required when using choice so
as to avoid the synchronisation issues that are also relevant to FSMs.

This representation was used in the context of Jason agents written using a
version of AgentSpeak(L) (see Section 2.4.1). Instead of sending a message in
the usual way (which simply requires the specification of the intended recipi-
ent, performative and message content), a message is instead sent to a monitor
agent. The monitor replies to state whether the communication is consistent
with the protocol. Errors in the implementation of a protocol can be detected
by the monitor.

As this work is based on a prototype, many additional interactions are re-
quired for verification, as each message is required to be sent to the monitor
and the monitor must reply with its approval. It is envisaged that this may
be reduced by closer integration into Jason by overriding its existing message
sending action. It is also intended that this approach be extended to cover
other logic-based AOP languages such as GOAL (see Section 2.4.3) and 2APL
(see Section 2.4.5).

59

3.3.6 State Charts

Another representation is a state chart visualisation for agent protocols [119].
This formulation is designed to be modular so that various protocol definitions
can be combined together in order to build conversations.

Figure 3.10: State Chart representation of an agent protocols (taken from [119]).

An example of this can be seen in Figure 3.10. On the left is a running conver-
sation that is presented from the point of view of an initiator agent, intended
to follow a protocol to inform a broker agent about a product that it sells. The
inner box shows the protocol that is to be followed. This anticipates that the
initiator first inform the broker that it is a seller, following this with a sub-
sequent message to send a description of the product being sold. From the
Figure, it can be seen that these are described in a high-level fashion.

The flexibility of the model allows for unexpected circumstances to be
handled, however. The conversation on the right of Figure 3.10 illustrates a
situation where the broker replies to the initial message with an inform mes-
sage to acknowledge receipt. As this is not part of the protocol that the initiator
was following, some adjustment is required. The system features a database
of protocol definitions, amongst which are generic protocols for responding to
messages with particular performatives. These are intended for use when a
more specific protocol definition is unavailable. In this case, the initiator agent
loads the standard protocol for handling inform performatives. Having done
so, it must consider both whether the sender believes what it has sent and
whether the initiator itself should believe it also. In this, the state chart be-
comes quite different from an FSM, as both of these transitions are used when

60

an inform is received. Another noteworthy point is that not all transitions
relate to message passing, including internal deliberation of the agent also.
For this reason, these state chart definitions are required to be specified separ-
ately for each intended participant in a conversation (although a mechanism
is available to combine two single agent protocol definitions into a multi agent
definition).

Once this sub-procedure has completed, the initiator may return to the original
protocol and continue by sending the description of the product that is being
sold.

3.3.7 Commitment Machines

Yolum and Singh perceive weaknesses in the use of FSMs for conversation
modelling [170, 171]. They see FSMs and other prescriptive protocol defini-
tions as being overly restrictive in that they lead to rigid executions (where
out-of-order messages result in fatal errors) and obscure the contents of the
states themselves. Instead of this, they proposed the use of a Commitment
Machine (CM). A CM is similar to an FSM in the sense that it consists of states
and transitions. Unlike an FSM, however, the key aspect is how a conversa-
tion’s state is identified. Whereas an FSM concentrates on matching the com-
munications between agents to transitions, a CM identifies the states by ex-
amining any social commitments that the participating agents have created in
their communication (see Section 3.2.3).

Within a CM, each state can be logically inferred by examining the social com-
mitments in place at that point in time. This inference provides a fundamental
difference from an FSM in that a CM has no particular start state, since the
current state of the social commitments can be used to infer any conversation
state. Actions that affect the commitments are, in effect, transitions between
states. The state of the commitments present in the MAS after any action can
then be used to infer the state of the conversation after any actions have oc-
curred. Thus transitions are not triggered by examination of the messages
passed between agents themselves, but rather their effect on the commitment
structure of the system.

This approach is very flexible when considered in the context of protocol com-
position. Combining several protocols into one is easily accommodated, on
condition that the final state in one protocol can be accommodated by another
protocol with which it is combined. This facilitates a path that continues from

61

the end state of the initial protocol being followed.

States can be derived from the commitments that are in existence at any point
in time. No explicit transitions are defined: actions change the commitments
so the new state can be logically inferred at run-time.

One advantage of a CM representation is that the protocol can be reconfigured
by finding alternative paths between states. A conversation may be started
in the middle of a protocol if an agent is satisfied that the commitments that
should be present at the desired start state are indeed already in effect.

Reasoning about CMs at runtime can be a computationally expensive process,
so the authors have also developed a method whereby CMs can be translated
into FSMs at compile time. Although they argue that this restricts the flexibility
of the protocol, it is a quicker representation to deal with, as the transitions are
calculated beforehand.

It is argued that CMs change the process of protocol specification from defin-
ing how an interaction is executed to describing what interaction is to take
place on a higher level [163, 170].

A number of extensions to the basic CM model have also been proposed.
Winikoff et al. extend the CM model to allow specification of undesirable
states [163]. Fornara and Colombetti extend the model of commitments to
include a temporal aspect, in order to allow deadlines to be modelled [61].

A drawback of CMs is that where semantic mismatches occur, these are very
difficult to debug [124]. Verifying the interoperability of agents that make use
of social semantics models is an ongoing research problem [29, 151].

3.3.8 Interaction based on Expectations

An alternative model of using social semantics to model agent interaction is to
use expectations rather than commitments [156]. Semantics based on expect-
ations specify the link between observed events and possibly observable, yet
unknown, events. In this context, expectations are independent of the agents
involved in communication. Events are generally expected either to happen
or not to happen.

Social Integrity Constraints (SICs) are used to state that if some events occur,
it is expected that some other set of events have occurred previously. An ex-
ample is that if a quote for a price is sent by an agent to another, it is expected

62

that it has been preceded by a request for that quote. Protocols may be spe-
cified using SICs to outline the expectations of how the system should func-
tion. It is argued that this, like commitment-based interaction, allows more
flexibility to agents than the more rigid representations such as FSMs, CPNs
and Agent UML.

3.3.9 Mental Models

The use of communication modelled in terms of social semantics has been sub-
ject to the criticism that its semantics are overly objective, in that they say noth-
ing about how communication affects the communicating agents themselves.
An alternative semantics has instead been proposed that is based on the idea
that communication affects the receiver’s mental model of the sender [87]. This
is fundamentally different to the semantics of FIPA ACL and KQML, which
place unverifiable restrictions on the mental state of the sender prior to send-
ing a message.

The GOAL AOP language contains a concrete implementation of this to add
support for the grouping of messages into conversations. The motivation be-
hind this is the use of conversations as a mechanism by which actions and
communication may be synchronised in a multi-agent system [87].

Conversations are tracked on the multi-agent level, so it is not the responsib-
ility of each agent to reason about its own conversations. It is this centralised
control that allows for the synchronisation that is desired: by allowing an agent
to participate in only one conversation at a time, it acts in a similar way to a
semaphore.

Agents may only participate in a limited number of active conversations at any
time. Attempts to initiate a new conversation are placed in a queue of pending
conversations if any of the participants are already engaged in an active con-
versation. Pending conversations may be activated when an active conversa-
tion ends (by being closed by the initiator of the conversation). Messages are
linked to a particular conversation by means of a conversation ID. There is no
restriction to the number of agents that may participate in a conversation.

As with the other models of conversations based on semantics, there is no
concept of a pre-existing protocol that should be followed by agents. When
sending communications, agents tag the messages they send with conversa-
tion identifiers so that they can be matched to related messages.

63

3.4 Implementations

This Section examines the support for communication amongst those plat-
forms and languages discussed in detail in Section 2.4. Table 3.2 summarises
the support each has for ACLs, how it implements the semantics of its chosen
ACL (if applicable) and what support for conversation management is present.

Table 3.2: ACL Support in AOP
Language ACL Semantics Conversations
/Framework
2APL FIPA-ACL None None
Agent Factory FIPA-ACL None None
GOAL Custom Mental model of sender Semantics-based
Jadex/JADE FIPA-ACL With JSA Add-on Basic
Jason KQML Subset Basic None

3.4.1 FIPA ACL

2APL and Agent Factory both use FIPA-ACL. However, they do not imple-
ment the semantics of the language. In both cases, the only effect of receiving
a message is that the agent becomes aware of the message receipt. 2APL sup-
ports message events that can be used to trigger procedure call rules. Agent
Factory can either use a belief that a message has been received or raise an
event similar to that of 2APL. The treatment will vary depending on the AOP
language being used. Neither offer default support for conversation handling.

As Jadex is built on the FIPA-compliant JADE middleware platform, it makes
use of FIPA ACL for its communication also (Jadex and JADE are discussed
in Section 2.4.4). Incoming messages are placed in an agent’s message queue,
after which they are matched to a capability that will handle the message. This
capability will receive an event if the message is part of an ongoing conversa-
tion.

Some rudimentary conversation handling is supported, via manipulation of
the FIPA conversation-id and reply-with/in-reply-to parameters
(these are discussed in Section 4.2). Using a createReply action will result
in the creation of a message whose conversation-id or in-reply-to are
set automatically by consulting the appropriate values in the initial message.
An action is also provided to create a unique identifier for the initiation of a
conversation.

64

In addition to this basic conversation handling, Jadex includes default
implementations of a subset of the FIPA interaction protocols (Namely
fipa-request, fipa-contract-net, fipa-iterated-contract-net,
fipa-english-auction and fipa-dutch-auction: FIPA interaction
protocols are discussed in Section 4.4). These implementations include goals
and beliefs relating to the relevant protocol for both the initiator and the parti-
cipant. As such, the specification of the protocol is separated according to the
roles the agents play.

By default, JADE does not apply any particular semantics to messages that
are received by agents. However, an extension known as the Jade Semantics
Add-on (JSA) adds support for FIPA’s semantics to the platform [13, 131].

3.4.2 KQML

Jason (which was discussed in Section 2.4.1) uses a subset of KQML with
simple semantics [19, 159]. For instance, when receiving a tell message, the
fact is automatically added to the belief base. Similarly, achieve results in the
adoption of a goal. In each case, the new belief or goal that arises as a result of
the message is annotated with its source, so that models of trust can be integ-
rated into the implementation. Some undesirable consequences of automatic
goal and belief adoption can be combated by the use of the social acceptance
function. Messages with performatives that are not socially acceptable are dis-
carded. For example a request for action should only be received from an
agent with the social power to do so. It is left to the programmer to ensure
that whatever appropriate actions are necessary are taken upon the receipt of
messages.

3.4.3 Custom

GOAL (discussed in Section 2.4.3) uses three forms of message, based on nat-
ural language [87]. The types used are declaratives, interrogatives and imper-
atives. In each case, the semantics of the language involve the recipient up-
dating its mental model of the sender and no more. Further modifications to
its own mental state are left to the agent programmer to decide. For instance,
given a declarative message (where agent a informs agent b of some fact), the
recipient will believe that the sender believes the truth of what has been com-
municated. The aspect left to the programmer is the decision on whether or

65

not the recipient chooses to believe the fact itself. This allows issues of trust
to be built into the system. The same principle applies to interrogatives and
imperatives, where the recipient only adopts beliefs about the beliefs and/or
goals of the sender. GOAL’s support for conversations has previously been
discussed in Section 3.3.9.

3.5 Summary

From the above outline of agent communication, it can be seen that there is
clearly some disagreement about how communication should be modelled
and handled. Two principal strains of research can be identified: the first based
on prescriptive protocol definitions (e.g. FSMs, CPNs and Agent UML), with
a competing approach concentrating on a more flexible run-time model based
on semantics.

Much of the debate centres on the semantics used by each approach. The de-
cision to base FIPA ACL and KQML semantics on internal mental aspects of
the participating agents has been criticised, as it makes it impossible to verify
whether these are being followed (this was discussed in Section 3.2.2). In addi-
tion, the motivation for the utilisation of social semantics stems from the argu-
ment that prescriptive models are overly restrictive. By specifying sequences
of permissible messages, they do not permit agents to use their autonomy to
deviate from protocols to take advantage of additional information or cater
for exceptions. An additional criticism is that they outline how an interaction
should take place, but not the meaning behind that interaction.

In contrast, approaches such as FSMs or CPNs can easily and quickly be used
to verify whether agents are exchanging the correct messages, according to a
protocol definition that has been engineered by a developer a priori. Simplicity
and ease of implementation are gained at the cost of the expressiveness of the
protocol. Additionally, the use of semantics-based conversations in an open
system is not without its own complications. Agents should have a common
understanding of the semantics being used, and problems can arise where this
is not the case.

The following Chapter concentrates on the FIPA standards for agent commu-
nication. This includes a more in-depth discussion of the FIPA ACL and also
the library of standard interaction protocols FIPA has specified.

66

CHAPTER

FOUR

FIPA Communication Standards

4.1 Introduction

Chapter 3 outlined the history of Agent Communication Languages (ACLs)
and presented some of the other research that has been conducted in the area
of agent communication to date. Of the major standardisation efforts, FIPA-
ACL has gained the most traction amongst modern multi agent frameworks.
As such, it has been chosen as the base upon which the work in this thesis is
built. This Chapter therefore gives a more detailed discussion of these com-
munication standards.

The Foundation for Intelligent Physical Agents (FIPA) is a standards organisa-
tion that exists within the IEEE Computer Society. It is aimed at promoting the
adoption of multi agent technologies. In particular, it is concerned with the
development and promotion of standards for agent interoperability.

The most widely-adopted of the FIPA standards are those relating to agent
communication. FIPA-ACL outlines the structure and semantics of inter-agent
communications. This is discussed in Section 4.2. Building on this, FIPA has
also published a set of interaction protocols that dictate in what sequence FIPA
ACL messages should be exchanged in order to achieve certain tasks. These
are discussed in Section 4.4.

4.2 FIPA ACL Message Structure

The structure of FIPA ACL messages is outlined in [66]. This defines a FIPA
ACL message as consisting of a set of message parameters, some of which are
mandatory and others of which are optional. In addition to the parameters set

67

out by FIPA, the standard allows for user-defined, non-standard parameters
that must be prefixed with “x-”.

In all, FIPA proposes 13 standard message parameters, grouped into 5 cat-
egories, relating to types of communicative acts, communication participants,
message content, description of message content and the control of conversa-
tions.

The performative parameter indicates the type of communicative act rep-
resented by the message (e.g. providing information, requesting action, mak-
ing a proposal, etc.). A full list of FIPA standard performatives is outlined
in [68] and are discussed in detail in Section 4.3. The performative is the only
parameter that the standards require for all ACL messages. The use of per-
formatives in FIPA ACL indicates that it, like the Knowledge Query Manipu-
lation Language (KQML), is based on the principles of speech act theory.

The sender and receiver parameters refer to the agents that are participat-
ing in the communication. Each message may have only one sender but may
have multiple receivers. Every agent is required to have a unique identifier
by which it can be referred in ACL messages. In the case of multicast mes-
sages, the identifiers of the receiving agents must be explicitly included in the
receiver parameter. Both of these parameters will be present in the majority
of messages, but some situations exist where either may be absent (e.g. where
the sender wishes to remain anonymous or where a recipient can be inferred
from context).

The reply-to parameter is also concerned with the participants in a com-
munication. Ordinarily, replies to messages are addressed to the agent named
in the sender parameter. However, when the reply-to parameter is set,
responses should instead be addressed to the agent so named.

The content parameter contains the actual content of the message. Interpret-
ation of this content is to be performed by the receiver alone, meaning that
the interpretation by the sender and receiver may be different. The content
field is present in most FIPA ACL messages, though it is not compulsory. One
example of a message where it is not necessary is in the case of a message
with a cancel performative, which is intended to end a conversation. Here, if
the message uses a conversation-id parameter (see below) to indicate the
conversation that is to be cancelled, the content is implicit.

The description of the message content is performed by a combination of the
language, encoding and ontology parameters. The language parameter

68

refers to the formal language in which the content is expressed. Optionally,
the encoding parameter indicates the method used to encode the content,
and the ontology parameter may specify an ontology to use in interpreting
the content.

A number of parameters are intended to aid in the control of conversations.
The protocol parameter denotes the protocol that the sender is using to
guide its interaction. A non-null protocol parameter indicates that the
message is part of a conversation, for which a conversation-id should
also be provided. Each message in a conversation must have the same
conversation-id, which uniquely identifies a single conversation. Several
conversations may occur that follow the same protocol.

The reply-with and in-reply-to message parameters are also related. In
a situation where multiple interactions are occurring simultaneously, these are
used to allow an agent to refer to a prior conversation. If one agent sends a
message that includes “reply-with <expr>” then the receiver would reply
with a message including “in-reply-to <expr>”.

Finally, the reply-by parameter allows an agent to specify a time by which a
response should be received. The FIPA standards allow the agent implementer
to decide what constitutes a reply, for example the next message within a pro-
tocol or by matching the conversation specified in the initial communication.
It is also open to the agent to decide what the consequences of a late reply may
be, as this is also not specified in the standards.

4.3 FIPA ACL Standard Performatives

The performative parameter is the only compulsory parameter in a FIPA
ACL message. Performatives play an important role in specifying the nature
of the message that has been sent, and its intended effect. A list of the perform-
atives that are available for use with FIPA-compliant messages can be found
in [68]. Each of these has associated semantics to determine the feasibility con-
dition and rational effect of each action.

• Accept Proposal (accept-proposal): Used to communicate the accept-
ance of a proposal that was previously submitted (usually by means of a
propose message). The understanding is that the recipient of the mes-
sage will perform some action in the future.

69

• Agree (agree): Used to indicate that an agent is agreeing to perform
some action (frequently as a result of receiving a request to perform
it).

• Cancel (cancel): This is used in a situation where the sender previously
desired that the recipient perform a particular action. The cancel per-
formative is intended to indicate that this no longer holds, and that the
recipient’s action is no longer desired. This is distinct from a specific re-
quest to stop an action, in which case a request message is more appro-
priate. The cancel performative is most often seen within interaction
protocols, where it is used to terminate a conversation.

• Call for Proposal (cfp): This is generally used by a sender that desires that
another agent will perform some action. In this situation, a cfp is dis-
tributed to a number of agents to initiate a negotiation process whereby
the recipients are invited to submit propose messages to indicate their
willingness to undertake the requested action. Although this may be
used to initiate an auction process, this is not necessarily the case. A cfp

message may also be used to check the availability of a single particular
agent to perform the specified action. The receipt of a proposal in return
indicates that the agent is capable of performing the specified action, and
is willing to do so.

• Confirm (confirm): This performative is used to indicate that the sender
believes a particular proposition to be true. The sending of such a mes-
sage indicates that the sender intends the recipient to come to believe
that the proposition is true.

• Disconfirm (disconfirm): This performative is used to indicate that the
sender believes a particular proposition to be false. The sending of such a
message indicates that the sender intends the recipient to come to believe
that the proposition is false.

• Failure (failure): This is used to indicate to the recipient that an ac-
tion was attempted but has failed to complete successfully. The message
should also include (where possible) an explanation of why the action
failed to complete.

• Inform (inform): The inform performative is used for the sender to in-
form the recipient that a particular proposition is true. In sending an

70

inform message, the sender also indicates its intention that the recipi-
ent should also believe the truth of the given proposition. This is closely
related to the confirm and disconfirm performatives. The choice of
which to use depends on the sender’s knowledge of the recipients beliefs.
If the sender believes that the recipient has no knowledge of the propos-
ition, an inform performative should be used. If, on the other hand, the
sender is uncertain about the proposition, a confirm (or disconfirm
if the proposition is false) is the appropriate mechanism to clarify the
recipient’s beliefs.

There is some ambiguity regarding this performative, however.
Amongst FIPA’s interaction protocols (see Section 4.4), several refer to
inform-done and inform-result in the same way as other per-
formatives, though these are not included in [68]. In some situ-
ations (e.g. in the fipa-request protocol), the protocol specification
uses inform-done to indicate that a request has been completed and
inform-result to indicate the result of the request being completed.
Additionally, an inform-t/f performative appears in the fipa-query
protocol, to communicate a boolean value.

Despite this distinction between a simple inform message and the vari-
ations thereon, no guidelines are supplied either within the interaction
protocols themselves or within the FIPA Communicative Act Library
Specification [68] to indicate whether these should be treated as separate
performatives or whether the nature of the message should be contained
in the content of an inform message.

Some clarity may be sought by consulting systems that aim to follow
the FIPA interaction standards. The MadKit [85] system includes these
additional performatives in the same way as those outlined in [68]. In
contrast, JADE [15] and Agent Factory [36] do not include these addi-
tional performatives, preferring to implement only those that appear in
the standards.

• Inform If (inform-if): This is a macro act that is not directly sent as the
performative in a message. The inform-if performative is equivalent
to informing an agent whether a proposition is true or false. An example
of this usage is where an inform-if message is included as the content
of a request message that asks the receiver to reply with an inform

message that indicates whether or not Paris is the capital of France.

71

• Inform Ref (inform-ref): In a similar way to inform-if, inform-ref
is also a macro act that is not directly sent in an ACL message. Whereas
inform-if is designed for communicating the truth of a proposition,
inform-ref is used to provide details about some entity. For ex-
ample, one agent sends a request message that asks the receiver (via
an inform-ref) to reply to say what the capital of France is. The re-
ceiver should reply (using an inform) to indicate that Paris is the capital
of France.

• Not Understood (not-understood): This is used to indicate that the
sender did not understand some action that was previously performed
by the recipient. This action is typically a communicative act, meaning
that the sender of the not-understood message previously received a
message from the recipient that it was unable to understand.

• Propagate (propagate): This allows an agent to send a message to an-
other agent, and also request that it be forwarded to some set of agents.
The contents of a propagate message should contain two distinct parts.
Firstly, a description is provided that will be used to select the agents to
which to forward the message. Secondly, the message itself should also
be embedded.

• Propose (propose): This is typically sent as a response to a cfp to in-
dicate that the sender of the propose message is prepared to perform
a particular action, subject to certain preconditions. A typical precondi-
tion would be to specify the price of a bid in an auction or negotiation
protocol.

• Proxy (proxy): This is similar to the propagate performative, with the
exception that the recipient is only asked to forward the message to other
agents. As such, the recipient should not interpret the embedded mes-
sage content as being addressed to itself and is merely for the attention
of the agents to which the message is forwarded.

• Query If (query-if): This is used by the sender of the message to ascer-
tain whether or not the recipient believes a particular proposition to be
true. It is anticipated that the recipient will inform it of the truth of the
proposition.

• Query Ref (query-ref): This is used for the sender of the message to
request a particular object that is described in the content of the message.

72

The recipient is expected to respond with an inform message contain-
ing details of the object or set of objects that correspond to the specified
descriptor.

• Refuse (refuse): This is used to indicate that the sender is refusing to
perform a particular action on the grounds that the action in question is
unfeasible.

• Reject Proposal (reject-proposal): Following the receipt of a
propose message, an agent may respond with a reject-proposal

message to indicate that it does not desire the sender of the proposal to
carry out the relevant action contained in the proposal.

• Request (request): This is used by a sender to request that the recipient
of the message performs some action (which is described in the content
of the message). The FIPA standards explicitly state that the action to
be performed may be another communicative act, such as sending an
inform message.

• Request When (request-when): This is similar to the request perform-
ative, with the exception that the requested action is not required to be
performed immediately. Instead, the content of the message should also
indicate some precondition for the action. This message indicates that the
requested action should be performed when the specified precondition
becomes true.

• Request Whenever (request-whenever): Unlike request-when, the
request to perform an action does not lapse as soon as the action has been
performed. Instead, the recipient of the message is requested to perform
this action every time the specified precondition becomes true. This per-
sistent request may be terminated by the sending of a cancel message
by the agent that originally sent the request-whenever message.

• Subscribe (subscribe): This is similar to query-ref, in that it is
used to ask an agent for some value. The principal difference between
query-ref and subscribe is that the latter also indicates that an agent
wishes to be informed of any change in the specified value in the future,
rather than being a one-off request for information. The subscription ini-
tiated by this message may be terminated by a cancel message being
sent to indicate that the sender is no longer interested in receiving up-
dates on the value in question.

73

4.4 FIPA Interaction Protocol Specifications

FIPA recognised that defining a communication for individual messages is not
sufficient for the demands of the MAS community. As such, a number of stand-
ards relating to common interaction protocols were also developed. These are
specified by means of Agent UML interaction diagrams (based on extensions
to UML 1.x [129]) and informal semantic descriptions of the interaction proto-
cols. The UML diagrams for all of the FIPA interaction protocols are contained
in Appendix A.

The majority of the protocols involve communication between two agents. The
agent that sends the first message in a conversation is referred to as the “initi-
ator”, with the other agent involved being referred to as the “participant”.

The FIPA standards documents tend not to differentiate between protocols and
conversations, referring to each as “Interaction Protocols”. For clarity and
consistency, some quotes from the standards have been edited to refer to a
“protocol” (a specification of a permissible sequence of messages) or a “con-
versation” (a running instance of a protocol). In each case, the replacement is
indicated by the use of brackets.

4.4.1 Common Elements

For each of the FIPA interaction protocols, there are two situations where the
conversation flow may be interrupted by messages that are not specified in the
protocol itself. The first situation is where the recipient of a message does not
understand the message that it has received. This may occur for any message
that forms part of a conversation. In this case, the recipient may respond with
a not-understood message to indicate its lack of understanding. According
to the FIPA specifications, this “may terminate the entire [conversation] and
termination of the interaction may imply that any commitments made during
the interaction are null and void” [74, 72]. However, no definitive guidance is
provided on how a not-understood message is processed.

The second exception allows the initiator of a conversation to cancel the con-
versation at any point. Unlike the not-understood case, the cancellation of
a conversation must be acknowledged by the other participant in the conver-
sation, using a meta-protocol provided in each of the interaction protocol spe-
cifications discussed below. This meta-protocol is outlined in Section 4.4.6.1.

74

Each interaction protocol in the following Sections is accompanied by the ref-
erence number by which it is referred within FIPA. These have an “SC” prefix
where they have become confirmed standards, with experimental standards
featuring an “XC” prefix.

4.4.2 Bipartite Protocols

The following Sections outline those protocols that are intended for use by
exactly two communicating agents.

4.4.2.1 FIPA Request Interaction Protocol Specification (SC00026)

The fipa-request protocol provides a mechanism by which the initiator
agent can request another to perform a particular action [74]. It is illustrated
in Figure A.1 in Appendix A.

There is no requirement on the participant agent to agree to perform this re-
quest, so it may be refused by means of a refusemessage. Alternatively, if the
participant accedes to the request, it may respond with an agree message to
indicate this. The protocol explanation requires that this occur “if conditions
indicate that an explicit agreement is required”, although it is not specified
exactly how this is to be communicated or agreed. When this does occur, in
addition to communicating its agreement, the participant should also commu-
nicate the outcome of performing the requested task. This can either be to
notify the initiator of the failure of the task (using a failure message) or its
success via an inform message.

The nature of this inform message can either be simply to communicate that
the requested action was performed successfully, or else to communicate a
particular result of the action. These are referred to as inform-done and
inform-result respectively. The decision as to which of these messages to
send is solely at the volition of the participant.

The specification also notes that if the requested action is quick, the participant
may skip the agreement phase in favour of simply performing the action and
communicating its result. This may be indicated by using the reply-by para-
meter in the initial request message. If the requested action is capable of
being performed before the timeout, the agreement stage may be skipped in
favour of only communicating the result of the action. For longer-running ac-
tions, the initial agreement is necessary in order to ensure that the conversation

75

does not time out and in order to indicate to the initiator that it intends to carry
out the requested action.

4.4.2.2 FIPA Query Interaction Protocol Specification (SC00027)

This protocol serves two related functions. One option for the initiator is to
query the participant for the truth value of a particular proposition (via a
query-if message). Alternatively, the initiator may query for a particular
object by means of a query-ref message [72]. The agent UML diagram for
this protocol can be seen in Figure A.2 of Appendix A. The structure of the
protocol is very similar to the fipa-request protocol: the participant can
communicate its agreement or refusal to participate in the conversation and
the ultimate result is the sending of either a failure or inform message.

In addition to the initial message, it is the nature of these final messages
that differs from fipa-request. Here, there are also two types of inform
messages (referred to as inform-t/f and inform-result). Unlike the
fipa-request protocol, however, guidance is given as to which type of
inform message should be used to end the conversation. In the event that
the conversation began with a query-if message, the final inform should
merely indicate the truth value of the proposition that was contained in the
original message (this is the inform-t/f message). If the conversation began
with a query-ref message, the final message should contain the answer to
the query. This is referred to in the same way as in fipa-request, namely as
an inform-result message.

Given that the eventual terminating message depends on the performative
used in the initial message, it could be argued that this protocol is logically
two different protocols rolled into one. Given that the final communication is
dependent on the nature of the initial communication, this protocol could be
split into separate query-if and query-ref protocols.

The fipa-query protocol shares the same ambiguity as fipa-requestwith
regard to the optional communication of agreement prior to the initiator being
informed of the final result. A fipa-query is also terminable by sending a
not-understood message or using the fipa-cancel meta-protocol.

76

4.4.2.3 FIPA Request When Interaction Protocol Specification (SC00028)

The Request When Protocol allows the initiator to request that a task be carried
out by another agent whenever some specified precondition becomes true [75].
The recipient of the initial message is entitled to refuse to perform this action
but in the event that it agrees, then it is expected to communicate the result
of its attempt to carry out the requested task. The protocol is illustrated by
Figure A.3 in Appendix A.

Other than the performative of the initial message being request-when

rather than request, the structure of the fipa-request-when protocol is
identical to that of fipa-request. The differences lie in the interpretation of
the protocol. Unlike in a fipa-request conversation, the requested action
is not to be performed immediately and so it is necessary for the participant
to communicate its agreement to perform the task. Once the precondition ex-
pressed in the original message is satisfied, the action is performed and the
outcome communicated to the initiator agent. Again, this can be done via two
different types of inform message (inform-done and inform-result).

The fipa-request-when protocol also allows for termination of the conver-
sation by means of a not-understood message or using the fipa-cancel
meta-protocol.

4.4.2.4 FIPA Subscribe Interaction Protocol Specification (SC00035)

The fipa-subscribe interaction protocol allows the initiator to request that
an action be performed immediately, but also that this action be performed
again whenever a referenced object changes [76]. It is illustrated by Figure A.4
of Appendix A.

This protocol is similar in structure to the fipa-request and related pro-
tocols. Beginning with a subscribe message (rather than a request), the
participant must either agree or refuse to participate further. The original
message must describe some object in which the initiator is interested.

Once it has agreed to participate, the participant must send inform messages
to the initiator whenever the object referred to in the initial message changes
(this is described as an inform-result in the protocol specification). As with
similar protocols, a failure message terminates the conversation if a failure
is experienced by the participant.

77

As with the other interaction protocols, the initiator may end the conversation
by invoking the fipa-cancel meta-protocol or either participant may send
a not-understood message that may also result in termination. Other than
the participant refusing to participate or experiencing a failure, this is the only
recognised way to formally end the conversation and its associated subscrip-
tion.

4.4.2.5 FIPA Propose Interaction Protocol Specification (SC00036)

The fipa-propose interaction protocol is intended for use by an agent
to send an unsolicited proposal to indicate to another agent that it pro-
poses to perform a specified task. A relatively simple protocol, the
conversation ends on receipt of a response (either accept-proposal

or reject-proposal) [71]. Unlike some other protocols (such as
fipa-contract-net and fipa-request), no further communication is
specified in the protocol to allow the initiator to communicate the result of
the action to the other participant. The protocol is illustrated in Figure A.5 in
Appendix A.

As with the other interaction protocols, either the not-understood or the
fipa-cancel mechanisms may be used to terminate the conversation at any
time.

4.4.3 Group Protocols

Two of the FIPA standard interaction protocols can be considered to be group
protocols, as they allow an initiator to converse with an arbitrary number of
participants (described as 1:N protocols). In each case, the standard leaves the
choice of a conversation-id to the discretion of the initiator agent. The
initiator has the option either to use the same conversation-id for every
participant with whom it has begun a conversation, or else to use a separate
conversation-id with each participating agent. Using separate conversa-
tion identifiers effectively treats the entire interaction as being composed of a
number of separate one-to-one conversations.

78

4.4.3.1 FIPA Contract Net Interaction Protocol Specification (SC00029)

The fipa-contract-net protocol (illustrated in Figure A.6 in Appendix A)
is intended as a mechanism by which the initiator can find another agent to
perform a particular task [69]. It does this by soliciting proposals from other
agents using a cfp message. This specifies the task, and also outlines any con-
ditions that are placed on the execution of the task. The participants outline
the conditions or constraints under which they are willing to perform the re-
quested task via a propose message. Alternatively, an agent may refuse to
submit a proposal.

Having received the proposals from all willing participants, the initiating
agent can choose between them and indicate that it has accepted one or more
of the received proposals (using an accept-proposal message), rejecting
the others (with a reject-proposal message).

The initiator may also set the reply-by parameter in the initial message to
set a deadline by which participants must respond. Failure to respond results
in rejection, on the grounds that the proposal was too late.

Participants whose proposals are accepted then perform the specified task. As
with the fipa-request and fipa-request-when protocols, the result of
this execution should be communicated back to the initiator using either a
failure or an inform message. Again, the inform can take the form of
either inform-done or inform-result.

4.4.3.2 FIPA Iterated Contract Net Interaction Protocol Specification
(SC00030)

The fipa-iterated-contract-net interaction protocol is closely related
to the fipa-contract-net protocol, with the principal difference being that
the initiator is not limited to sending only a single initial cfp [70]. This pro-
tocol is illustrated in Figure A.7 of Appendix A.

With the iterated version of the protocol, once a number of proposals have
been received the initiator has the option of accepting or rejecting those pro-
posals as in fipa-contract-net. With this protocol, it also has the option to
re-issue a modified cfp to some or all of the participants who submitted a pro-
posal. Thus the iterative nature of the protocol is created, with re-invited par-
ticipants once again deciding whether or not to make a proposal in response
to the modified cfp. Participants who had previously refused to submit a pro-

79

posal, or whose proposals were rejected, are not sent a modified cfp as they
have left the process (either their refusal to make a proposal or the rejection of
a proposal will end the conversation).

It is at the discretion of the initiator whether or not to instigate a new itera-
tion each time it has received replies from all invited participants. In the final
iteration, all remaining proposals must be accepted or rejected.

Any agents whose proposals have been accepted are required to com-
municate the result of performing the required task back to the initiator.
Notably, in contrast with the fipa-request, fipa-request-when and
fipa-contract-net protocols, no distinction is made in this protocol spe-
cification between the type of inform message that may be sent to commu-
nicate the successful completion of the task.

4.4.4 Macro Protocols

The FIPA standards include definitions of two macro protocols. These are cat-
egorised as such because they make use of embedded messages which may be
part of a conversation that follows a different underlying sub-protocol.

4.4.4.1 FIPA Brokering Interaction Protocol Specification (SC00033)

The fipa-brokering protocol is a macro protocol for use in systems where a
broker agent is required [67]. A broker agent is an intermediary through which
communications must be routed in order for two other agents to interact. As
part of its function, the broker may be required to identify agents that are suit-
able for the interaction (possibly based on knowledge of the capabilities of the
agents in the system).

The intention of the protocol is to provide a wrapper around some other pro-
tocol that the interacting agents are following. Thus the messages sent to the
broker (using a proxy performative) themselves wrap another message that
will typically identify a different underlying sub-protocol. Because the struc-
ture of the interaction depends on this sub-protocol, the brokering protocol is
intentionally written generically.

The protocol allows for the broker agent to agree to forward messages, to per-
form the actual forwarding of those messages in both directions and to make
the interacting agents aware of any failures in the brokering process.

80

This Agent UML diagram of this protocol can be seen in Figure A.8 of Ap-
pendix A.

4.4.4.2 FIPA Recruiting Interaction Protocol Specification (SC00034)

The fipa-recruiting protocol (shown in Figure A.9 of Appendix A) is very
similar to the fipa-brokering protocol with the principal difference that in-
stead of the broker agent acting as a proxy for messages in both directions, it
is involved only in the identification of suitable agents with which to inter-
act [73]. Once the initial message is sent to a suitable recipient, the interacting
agents can then contact each other directly for the remainder of the conversa-
tion.

4.4.5 Experimental Standards

Two of the specifications did not reach the stage of being declared as “Stand-
ards” and remain as “Experimental” specifications. As such, the style of these
specifications differs from the standard protocols in two significant ways:

• The sending of a not-understood message is explicitly included in the
protocol itself, rather than being permitted at any time.

• The fipa-cancel meta-protocol is not included in the specification.

These are also features of the experimental drafts of those protocols that did
become standards. As such, it is reasonable to assume that a modern imple-
mentation of these protocols would make use of these standard methods of
terminating the conversation.

4.4.5.1 FIPA English Auction Interaction Protocol Specification
(XC00031)

An English Auction consists of an auctioneer attempting to find the market
price of some item. It does this by initially proposing a price lower than its
notion of what the ultimate price will be and then continually incrementing
the price until agents are no longer willing to pay the proposed price. When
this happens, then the highest price for which proposals were received is con-
sidered to be the market price [64]. The auctioneer may decide to accept this

81

market price, depending on what its own private reservation price is. FIPA’s
Agent UML diagram for the English Auction is shown in Figure A.10 of Ap-
pendix A.

4.4.5.2 FIPA Dutch Auction Interaction Protocol Specification
(XC00032)

A Dutch Auction is one where the auctioneer attempts to find the market price
by starting the bidding at a much higher price, with the asking price being
progressively reduced until a bidder is found. As with the English Auction, the
FIPA Dutch Auction Interaction Protocol also remains in the “experimental”
state [63]. The Agent UML diagram contained in the experimental document
can be seen in Figure A.11 of Appendix A. The protocol is designed so as to
allow for partial acceptance also (e.g. when an auctioneer is selling a quantity
of some good, it may sell part of the goods to different buyers).

4.4.6 Others

In addition to those interaction protocols that were published as standards, a
meta-protocol was included in each of the standard protocols in order to allow
the interaction to be cancelled before it had otherwise completed.

4.4.6.1 FIPA Cancel Meta Protocol (fipa-cancel)

The FIPA Cancel Meta-Protocol (fipa-cancel1) is not specified in a stand-
ard of its own, but is included in all of the other standards (it is not included
in the experimental standards) to provide a mechanism by which the initiator
of the conversation may cancel the interaction. Because this may happen at
any time, it is not embedded directly into the protocols to which it is relevant
[67, 69, 70, 71, 72, 73, 74, 75, 76]. The initiator of the conversation that is to be
cancelled indicates its desire to cancel by sending a cancel message to an-
other participant. The recipient of the cancel message must indicate whether
or not it found it possible to cancel the interaction (it may be the case that a
task that it was previously asked to perform is already in progress, making it
too late to cancel the procedure). If the conversation can be cancelled, this is

1The “fipa-cancel” label is not mentioned anywhere in the relevant FIPA standards. It
has been added here so that it can be referenced in a way that is consistent with the top-level
protocols for which FIPA has provided labels.

82

indicated by means of an inform-donemessage. Failure to cancel the conver-
sation is communicated with a failure message. The protocol is illustrated
by Figure A.12 in Appendix A.

As with all of the FIPA standard protocols, the contents of the messages ex-
changed as part of a conversation following the cancel meta-protocol are not
specified in standards themselves. This has the potential to cause ambiguity.

Within the FIPA standards, the conversation-id parameter of the messages
in a fipa-cancel conversation must be the same as that of the conversation
it attempts to cancel. Thus the inform-done or failure message that con-
cludes the cancellation has the potential to be confused with similar messages
that may be due as part of the original conversation, with the agent having
ignored the request for cancellation.

The FIPA standards state that “[e]laboration on this pattern will almost cer-
tainly be necessary in order to specify all cases that might occur in an action
agent interaction. Real world issues such as the effects of cancelling actions,
asynchrony, abnormal or unexpected [conversation] termination, nested [con-
versations], and the like, are explicitly not addressed here.” As such, a great
deal of interpretation is required of agent programmers in implementing the
cancel meta-protocol. This is reflected in the decision of the JADE developers,
who have decided not to support fipa-cancel on the grounds that it is in-
sufficiently specified in the standards [14].

4.4.7 Problems with FIPA Interaction Protocols

A number of criticisms can be identified with the FIPA standard interaction
protocols that make them difficult to produce concrete implementations for.
These are as follows:

• Generic: The FIPA interaction protocols only specify what the performat-
ives of the messages exchanged should be. They do not state what the
message content should be, as they are designed to be sufficiently generic
to be used in a variety of situations.

• Inconsistent: Many of the interaction protocols specified by FIPA refer to
inform-done and inform-result performatives. However, these are
not part of the ACL message standard.

• Incomplete: The fipa-english-auction and fipa-dutch-auction

83

IPs were never formalised into standards after being published as draft
proposals. As such, the last published versions are quite different in style
to the other IPs.

• Ambiguous: The fipa-brokering IP states that “parts of this protocol
are written very generically”. The fipa-request IP states that “the
agree may be optional depending on circumstances”. Because of am-
biguities like this, it can be difficult to correctly implement some of the
FIPA standard IPs in a manner consistent with other implementations.

4.5 Summary

This Chapter, along with Chapters 2 and 3 outline the state-of-the-art in terms
of the development of MASs, with particular emphasis on issues of communic-
ation. The following Chapters describe the Agent Communication Reasoning
Engine (ACRE), which forms the core of this work. This has FIPA ACL at its
core and so it is particularly important to outline the features of this ACL in
detail prior to the discussion of ACRE.

Like KQML, FIPA ACL is based on speech act theory, with each message spe-
cifying a performative that represents its effect. Although semantics have been
defined for each of the standard performative types, concrete implementations
of FIPA ACL systems rarely enforce these. As such, these semantics are typ-
ically understood to be advisory in nature rather than strict rules that are re-
quired to be followed.

In addition to the basic communication language, FIPA has also defined a
number of standard interaction protocols that are intended to facilitate agents
to engage in more complex interaction using a series of messages. Underlying
this is the facility to embed identifiers for protocols and conversations in each
FIPA ACL message. Although these serve as a useful indicator of the types of
common interactions that the community requires, the way in which these are
presented is not without problems.

84

Part II

ACRE: Agent Conversation
Reasoning Engine

CHAPTER

FIVE

Introduction to ACRE

5.1 Introduction

The Agent Conversation Reasoning Engine (ACRE) is aimed at provid-
ing conversation-level communication capabilities to agents. As noted in
Chapter 3, the majority of multi agent platforms, languages and toolkits sup-
port inter-agent communication on a message-level basis only. However, in
reality messages are rarely sent in isolation and will frequently be related to
other messages that have previously been sent or received, This occurs, for
example, as part of an auction or other negotiation.

ACRE models conversations between agents as deterministic Finite State Ma-
chines (FSMs), where messages exchanged between agents trigger transitions
between states. These FSMs are defined externally to the agents, so as to be in-
dependent of the choice of agent platform and Agent Oriented Programming
(AOP) language employed.

This Chapter introduces the definitions, concepts, advantages and limitations
of ACRE and also provides explanatory examples of how ACRE is used in
managing conversations between agents. Subsequent chapters provide more
detailed discussion including a formal model of ACRE’s conversation hand-
ling (Chapter 6), an abstract architecture describing how ACRE may be in-
tegrated into an existing MAS framework (Chapter 7) and an example of a
concrete architecture in which ACRE was integrated into the Agent Factory
framework (Chapter 8).

86

5.2 Aims and Features

Automatic conversation management: The principal aim of ACRE is to facil-
itate agents to engage in complex interaction in the form of conversa-
tions. To achieve this aim, it must be possible for messages to be grouped
together in an automated fashion while providing the agents with suffi-
cient capabilities to reason about conversations.

To this end, a Conversation Manager component is provided, which
is capable of matching messages to conversations. The mechanism by
which this is done is discussed informally in Section 5.6 and formally in
Chapter 6.

Compatibility: ACRE is intended for use with multiple AOP languages and
frameworks. Its design is not tied to any one AOP approach. This has the
consequence that ACRE makes very few assumptions about the capabil-
ities or mental models of the agents that employ it. Instead, it offers con-
venient conversation modelling that aids agents in acquiring knowledge
about their communication and engaging in new interactions. How these
are used is a decision for the developers of these agents according to the
tools available to them.

Simplicity and Usability: ACRE is intended to be a practical tool that will be
used by developers of Multi Agent Systems (MASs). For this reason, Fi-
nite State Machines (FSMs) were chosen as the model on which to base
protocol definitions. Although this has some limitations when compared
with some alternative approaches (see Section 5.7 for a deeper discussion
of ACRE’s limitations), this model was chosen for its simplicity and in-
tuitive understandability.

To aid with the usability of the system, a number of development tools
are provided with ACRE also, including a graphical protocol designer
and a real-time conversation viewer that allows developers to view the
progress of conversations while in the debugging phase of development.

Formal model: In addition to the informal discussion of ACRE’s conversation
handling presented in this Chapter, the full operational semantics of the
conversation manager are presented in Chapter 6. As the current imple-
mentation is written in the Java programming language, it is not immedi-
ately integrable with multi agent frameworks written in other languages.
The availability of operational semantics facilitates the development of

87

equivalent implementations in other languages that will reflect the refer-
ence implementation.

Generic and reference architecture: To aid with the integration of ACRE into
a multi agent framework, a generic architecture is provided in Chapter 7.
This divides the components supplied with ACRE into those that relate
to specific agents and those that are shared amongst agents as platform
services. This is intended to act as a guide to any developer aiming to in-
tegrate ACRE with a multi agent framework. Following this, the concrete
integration with the Agent Factory framework is discussed in Chapter 8.

Complex conversations: By default, ACRE’s representation of conversation
supports bipartite conversations. However, more complex conversations
involving more than two parties are desirable in many situations.

To cater for this situation, ACRE also provides a Group Reasoner com-
ponent, which is intended to allow an agent to define groups of related
conversations (e.g. multiple bipartite conversations related to the same
auction) and declare events in which the agent is interested. This gives
the agent the capability and flexibility to handle more complex commu-
nication patterns. This is discussed in more detail in Section 5.7.

Conversations independent of agents: In ACRE, the definition of protocols
and conversations is entirely independent of the reasoning process the
agent goes through in deciding what interactions to engage in. The FSM
that represents a conversation neither dictates nor depends on the par-
ticipating agents’ mental states. This is in contrast to some other ap-
proaches where the actions of the agent are intertwined with the protocol
definitions (e.g. COOL and JADE).

Having protocols defined in this independent manner has the side-effect
that an external monitoring agent that has access to messages exchanged
between participating agents can be used to verify that interaction pro-
tocols are being followed correctly, which can be used as part of the de-
bugging process (verifying compliance by observation [156]).

Shared protocol repositories: Agents can make use of shared repositories of
protocols that can be accessed remotely through HTTP or alternatively
can be stored on a local filesystem. Additionally, protocols are given ver-
sion numbers in order to ensure that agents can verify that they are mak-
ing use of the same protocol.

88

Re-use of protocols: Following the lead of [100], the definition of ACRE pro-
tocols is designed with inheritance in mind. More complex protocols can
import from simpler protocols and extend them.

Standards compliant: ACRE follows the FIPA communication standards (dis-
cussed in detail in Chapter 4) both in its support for FIPA ACL performat-
ives and also its use of FIPA ACL’s support for protocol and conversation
identifiers.

Support for interaction with non-ACRE systems The key focus of ACRE is
for use by all communicating agents in a system. However, interoperab-
ility with systems that are not ACRE-enabled has also been included. An
ACRE-enabled agent may communicate with any agent that is capable of
sending and understanding FIPA ACL messages. The process of match-
ing messages to conversations is not fully dependent on the protocol
and conversation-id fields being populated. It is described in more
detail in Section 5.6 and Chapter 6.

Agent API: In a MAS, the principal method of interacting with agents is by
ACL message passing. As noted by Cost et al. [39], sets of supported
conversations can be used as a form of agent ‘API’ so it becomes clear
how one should go about interacting with a particular agent. This is
aided by preserving the independence of agent deliberation and protocol
definitions, along with the maintenance of shared protocol repositories.

5.3 Definitions

Before a more in-depth discussion of how ACRE represents and reasons about
complex communication, it is necessary to provide definitions of those ele-
ments that will be under discussion in the following sections.

Protocol A protocol is a definition of a sequence of communications in which
two agents may engage. Each protocol is a description of a deterministic
FSM that may be used by agents in their communications.

Conversation A conversation is a specific instance of two agents engaging in a
sequence of communications that follow a specific protocol. There is no
limit to the number of conversations that may take place that have the
same underlying protocol. Conversations are executing FSMs.

89

State At any time, a conversation is described as being in some state. The state
of a conversation will dictate what form the next message should take,
in accordance with the underlying protocol definition. In this definition,
the state is identified only by name. However, as an FSM, the state of
the conversation is a function of both this state name and also the values
bound to any variables defined in the protocol.

Transition A transition links two states, in order to allow a conversation to
move between states. Each transition is a description of a message
that must be exchanged between the participants of a conversation.
Whenever a message is communicated that matches this transition, the
transition is “triggered” and the state of the conversation will change.
Variable bindings (whereby variables are assigned associated values)
may be created or altered as variables are matched against message
fields.

Current State Any active conversation is, at all times, in some state, known as
the current state.

Start State A start state is defined as one that has no incoming transitions.
Each protocol must define exactly one start state. A new conversation
that follows that protocol is initially in the start state, before any mes-
sages have been sent or received.

End State Any state from which no transitions are defined is known as an
end state. Upon reaching an end state, a conversation is considered to
have terminated. There is no restriction on the number of end states a
conversation may have.

Active Transition An active transition is a transition that begins at the current
state. At any time, only active transitions are candidates to be triggered
by a message being communicated.

5.4 Interaction Protocols as Finite State Machines

ACRE protocols are represented as Finite State Machines (FSMs), which are
discussed in Section 3.3.1. FSMs are a popular method of representing inter-
action protocols and offer an intuitive representation of a conversation that is
easy to represent and model.

90

The following Sections describe how the states and transitions of a FSM related
to message exchange in ACRE.

5.4.1 States

Within an ACRE protocol, each state is defined using only its name. However,
during the execution of the FSM to model a single conversation, the state of the
FSM is determined both by this name and by any variable bindings that have
arisen as a result of previous state changes. At the beginning of a conversa-
tion, no bindings are present as no communication has yet occurred. Variable
bindings will be acquired as messages are exchanged.

5.4.2 Transitions

Within a conversation FSM, a transition between states is triggered by an ACL
message that satisfies certain criteria. Each transition has exactly one from state
and exactly one to state. The from state is the state from which the transition
may be triggered. If this is the current state of the conversation, then the trans-
ition is considered to be active. The end state is the state in which the conver-
sation will be upon activation of the transition.

Transitions specify values for a number of message fields, and the transition
is triggered if all of the specified fields match against the corresponding para-
meters in the message. Full details of how this matching is done is provided
in Chapter 6. This is described more informally in the following sections.

The message parameters that ACRE allows a transition to specify are as fol-
lows:

Performative: The performative message parameter of a FIPA ACL mes-
sage. In an ACRE transition, this must be provided as a constant value
that must match the message’s performative exactly.

Sender: The sendermessage parameter, which contains the unique identifier
of the agent that sent the message. In an ACRE transition, this may either
be the actual identifier of the agent that is expected to send the message
or, more commonly, a variable that is intended to acquire the name of the
sender, so that it can match the same agent identifier for future messages
in the conversation. A full description of how variables are handled by
ACRE is given in Section 5.5.1.

91

Receiver: The receiver message parameter. In contrast to the sender para-
meter, the FIPA standards allow multiple agents to receive the same mes-
sage [66]. Thus the receiver parameter may contain multiple agent
identifiers. As ACRE only facilitates conversations between two agents,
a message that is sent to n different receivers is treated as n distinct mes-
sages with a single receiver specified. As with the sender field, the
receiver field may contain the actual identifier of an agent or a vari-
able.

Content: This is the actual content of the message, contained in the FIPA
content parameter.

5.5 Content Language

The content language used in ACRE transitions is modelled on the principles
of first-order logic, featuring predicates, functions and variables. As such, it
is intended that its operation will be intuitive to users of AOP languages that
use similar language (e.g. AgentSpeak(L), AFAPL). It is also intended that
converting between ACRE’s content language and any other logic-based lan-
guage used by agents will not be difficult. The full formal semantics of the
content language are defined in Chapter 6: this section serves as an informal
introduction.

In the definition of a protocol, the content language is used to define the prop-
erties of messages that will successfully advance a conversation that follows
that protocol. The mechanism by which this is done is discussed later in Sec-
tion 5.6. Each field in the message is compared against its definition in the
protocol to check if it matches and if so the conversation will advance.

A variable may appear as an argument within a predicate or function. When
variables are used in the definition of conversations, they can match any pre-
dicate or function in a message. Additionally, the definition of a conversation
allows for the maintenance of variable bindings. These record the values that
have been previously matched against variables during the process of advan-
cing the conversation. In some cases variable bindings are fixed for the dura-
tion of the conversation whereas in others they may be redefined at specified
points in the process. This is dictated by whether the protocol designer has
used these variables in a mutable or immutable context, as discussed in the
following Section.

92

5.5.1 Mutable and Immutable Context for Variables

The context in which a variable is used will dictate whether its value can be
changed or not. From the programmer’s point of view, when a variable is used
in a mutable context, it may have its value overwritten in the conversation’s set
of bindings. If used in an immutable context, this cannot occur. An immutable-
context variable is indicated by a ‘?’ sigil, whereas a variable prefixed by ‘??’
indicates that it is used in a mutable context. Thus, ‘?name’ and ‘??name’ refer
to the same variable. The difference in how it is treated when matching against
values in messages and generating bindings.

Thus when a variable is used in an immutable context, its behaviour depends
on whether a binding previously exists for that variable. If the variable has no
previous bound value, then it is free to match against any value and a binding
is then created between the variable and that matched value. However, if a
binding does previously exist, the variable can only be matched against a value
that in turn matches this bound value. No new binding can be created by this
process.

On the other hand, when a variable is used in a mutable context, it is possible
for a new binding to be associated with it, which replaces the previous bound
value. This means that the previous bound value is not relevant when match-
ing, since the variable is capable of matching any value (and acquiring that
value as its new binding).

From this discussion, we can define “matching” as a variable being paired
against some value with which it is (in the current context) capable of being
bound.

In the formal model, bindings are applied to terms before they are matched
with other terms. For a variable used in an immutable context, this results in
the variable being replaced with any value with which it is associated in the
bindings. If it has no previous bindings, it remains as a variable.

When the variable is used in a mutable context, however, this approach would
prevent it from acquiring a replacement binding. Thus when applying bind-
ings to a term, it is necessary to avoid replacing a variable that is used in a
mutable context with another value. This means that during the matching
stage, it can be associated with another term, which results in a replacement
binding.

From this analysis, we can see that the only difference in treatment of a variable

93

is in the application of bindings:

• Variables used in a mutable context are not replaced with their values be-
fore matching against a message. This leaves them free to match against
any value and acquire these as new bindings, which replace any bound
value that existed previously.

• Variables used in an immutable context are replaced with their values, if
a binding exists, before matching against a message. Thus the attempted
match is between this bound value and the value in the message, mean-
ing that no new binding can be generated for the variable. Where no
previous binding exists, no replacement is made and the variable is free
to acquire a new binding in the same way as if it was used in a mutable
context.

5.5.2 Anonymous Variable

The anonymous variable is a special variable (?) that has no name. Thus it
cannot be bound to any values. It is used in situations where the programmer
is allowing “anything” to appear in a particular location, without the desire to
capture that value for further use. The anonymous variable can match against
any value, but no bindings are created when it does so.

5.6 Conversation Handling

This Section provides an informal outline of how ACRE models and reasons
about protocols and conversations. It is followed by some sample conver-
sations for illustration. A full formal model of this process is presented in
Chapter 6.

In the ACRE model, tuples are used to represent the elements that are required
in such a system. Messages, protocols and conversations are the principal com-
ponents for which a model is required. Additionally, as protocols and conver-
sations are FSMs consisting of states and transitions, tuples are also used to
represent these states and transitions.

The tuple (s, r, c, φ, p, x) is used to represent a message. Here, s is the unique
agent identifier of the message’s sender, r is the unique agent identifier of the

94

recipient, c is the conversation identifier, φ identifies the protocol, p is the mes-
sage performative and x is the message content.

Each protocol is represented by a tuple (φ, S, T, ι, F) where φ is the protocol’s
unique identifier, S and T are sets of states and transitions respectively, ι is
the name of the initial state and F is a set of names of final (terminal) states.
Both ι and the names in F should match the names of states contained in S.
Although the model does not specifically restrict ι from appearing in F , this
is not particularly useful as it would represent a state that has no transitions
attached.

Within these protocols, each state is represented by the tuple (n, s, φ) where n
is the name of the state, s is the status of the state (whether it is a start, end
or intermediate state) and φ is the identifier of the protocol it belongs to. Each
transition is represented by (σ, ε, s, r, p, x). Here, σ and ε are the names of the
start and end states respectively, s and r represent the agent identifiers of the
sender and receiver respectively, p is the performative of the message trigger-
ing the transition and x is the message content. The states σ and ε may be
linked with multiple distinct transitions, though care must be taken in defin-
ing these transitions so that they cannot be triggered by the same message.
Failure to do so would result in the creation of a non-deterministic FSM.

Finally, a conversation may be represented by (φ,A, s, c, B, ψ) where φ is the
protocol identifier, A is the set of participating agents, s is the name of the
conversation’s current state, c is the conversation identifier, B is the current set
of variable/value bindings and ψ is the conversation status (active, completed
or failed).

The values permitted in the tuples shown here are based on first-order logic,
meaning that all values are constants, variables, functions or predicates.

When comparing values, the following rules apply:

• Constant values match against other identical constant values.

• Variables match against any value.

• Functions match other functions that have the same functor, have the
same number of arguments and whose arguments in turn match.

• Predicates match other predicates that have the same predicate sym-
bol, have the same number of arguments and whose arguments in turn
match.

95

An advantage of using FSMs as a representation for protocols is that an intuit-
ive graphical visualisation can easily be generated. An example of this can be
seen in Figure 5.1. This figure shows an FSM for a simple, one-shot Vickrey-
style auction. In this type of auction, an auctioneer sends a call for proposals
(using a cfp performative), to which a participant may respond either by mak-
ing a bid or by declining to do so. If a bid has been made, the auctioneer may
either accept or reject it.

Figure 5.1 shows the states and transitions associated with this protocol.
Double-lined borders indicate end states (nobid, rejected and accepted

in this example). The state named start is shown with an incoming arrow
that does not originate from another state. This indicates that start is the ini-
tial state. Transitions are triggered by comparison with messages exchanged
between the participating agents. Each of the fields shown in the diagram (per-
formative, sender, receiver, content) corresponds to an element of the tuple
used to represent it.

Figure 5.1: FSM representation of the Vickrey Auction protocol.

On receipt of a message, these transitions will be compared to the values con-
tained in the message to find whether a match can be identified. For example,
the first transition in Figure 5.1 can only be triggered by a message with the
performative cfp, since this field contains a constant value. In contrast, the
sender or receiver of the first message can be any agent, since no particular
value has been bound to the ?initiator and ?bidder variables at this stage
of the conversation.

The bindings associated with the conversation (B) is a set of key/value pairs
that binds variables to constants or functions against which they have been
matched in triggering a transition. Any variables that have been matched
against a constant or function in a triggering message are given a binding
that is stored in B. In the example from Figure 5.1, the sender of the initial
message will have their agent identifier bound to the ?initiator variable,
so any further messages must be sent by/to that same agent, whenever the

96

?initiator variable is used. This is an example of a variable being used
in immutable context. Once the variable has been bound to a value, that value
may not change for the duration of the conversation if the variable is only
used in immutable context. Using the same variable in mutable context (i.e. as
??initiator) would allow a new value to be bound during the execution of
the conversation.

The following Sections outline the three key stages of the conversation man-
agement algorithm. By convention, elements of tuples are denoted by using
subscripts (e.g. the initial state (ι) of a protocol (p) is shown as pι).

5.6.1 Identifying Candidate Conversations

The first stage of the conversation management algorithm is carried out
whenever a message is exchanged and is shown in Figure 5.2. Whenever a
message is sent, it must be checked against existing active conversations to
identify any it is capable of advancing. A set of candidate conversations is gen-
erated, which consists of all active conversations that can be advanced by the
message. An active conversation is considered a candidate whenever it has an
active transition that can be triggered by the message.

C ← ∅ to store candidate conversations
m←message sent/received
for each active conversation (c) do

if (mc = cc and mφ = cφ) or mc = ⊥ then
for each transition (t) where tσ = cs do

if matches(ms, apply(cB, ts)) and matches(mr, apply(cB, tr))
and matches(mx, apply(cB, tx)) and matches(mp, tp) then
Add c to C

end if
end for

end if
if mc = cc and c /∈ C then
cψ ← failed

end if
end for

Figure 5.2: Identifying candidate conversations.

The apply(B,a) function is used to apply a set of bindings (B) to a term (a).
If a is a variable used in an immutable context for which a binding exists in
B, then the bound value is returned. Otherwise, a is returned unaltered. This
has the effect of differentiating between the two contexts that can be associated

97

with a variable. Because a variable used in immutable context is replaced with
its bound value, it will only match if its bound value matches the value in the
message. However, when a variable is used in mutable context (or when it is
in immutable context but has no previously bound value), it is not replaced
as it is free to match against any value. This matched value will later become
bound to the variable if it successfully advances the conversation later in the
process.

Amongst active conversations, conversation identifiers must be unique. Thus
in situations where the message to be processed contains a conversation iden-
tifier, a maximum of one candidate conversation will be identified. However,
ACRE is intended to be used by agents communicating with others that lack
conversation management capabilities. For this reason, it is necessary to make
provision for messages received without an explicit conversation identifier. In
this case, the message is compared against all active conversations to ascertain
if any can be advanced by it. Here, the set of candidate conversations may
have multiple elements, being all those candidate conversations that have an
active transition capable of being triggered by the message. The handling of
situations with multiple candidate conversations is outlined in Section 5.6.3.

If the message contains a defined conversation identifier, but that conversation
cannot be advanced by the message, the status of the conversation must be
changed to failed.

Although this approach allows for interaction with agents that are not
conversation-aware while still allowing for conversation management, it is im-
portant to note that certain undesirable side-effects can result. For example, an
agent may make use of protocols that have been defined with similar trans-
itions, or multiple conversations following the same protocol may arrive in
the same state. In these cases, multiple candidate conversations will be identi-
fied and none can be definitively advanced. Dealing with this type of situation
may require further negotiation or clarification between the parties to the con-
versation, or re-visiting previously matched messages in case they have been
matched to the wrong candidate conversation. Handling these issues is out-
side the scope of the work presented in this thesis.

The possibility of such multiple candidate conversations being identified when
communicating with a system that is not conversation-aware something that
should be borne in mind by protocol designers where the protocols are inten-
ded for use for communicating with such systems.

98

5.6.2 Identifying Candidates for New Conversations

If a message cannot be associated with an active conversation, the second stage
is to find whether it is possible for the message to initiate a conversation that
follows a known protocol. This procedure is shown in Figure 5.3.

if |C| = 0 then
for each protocol (p) do

if mφ = pφ or mφ = ⊥ then
for each transition (t) where tσ = pι do

if matches(ms, ts) and matches(mr, tr) and matches(mx, tx) then
if mc = ⊥ then

Add (pφ, {ms,mr}, pι, nextid(), ∅, active) to C
else

Add (pφ, {ms,mr}, pι,mc, ∅, active) to C
end if

end if
end for

end if
end for

end if

Figure 5.3: Identifying candidate protocols for new conversations.

In cases where the message contains a protocol identifier, then only the pro-
tocol with that identifier is considered. Otherwise, the message is compared
against the initial transition of every available known protocol. If a suitable
protocol is found, a new conversation is created and added to the set of candid-
ate conversations (C). If the message contained a conversation identifier, this
is used as the identifier for the new conversation. Otherwise, a new unique
conversation identifier is generated (by means of the nextid() function).

5.6.3 Advancing the Conversation

Having identified new or existing conversations that match against the given
message, a conversation must be advanced as appropriate. This process is
shown in Figure 5.4. At this stage, events are raised that can be seen by the
agent to inform it of the outcome of the conversation reasoning process. If the
message was not capable of advancing an existing conversation or initiating
a new one, an “unmatched” event is raised. If there were multiple candidate
conversations (which cannot be the case if conversation identifiers are defined
for all messages), an “ambiguous” event is raised.

99

if |C| = 1 then
c← the matched conversation in C
t← the transition matched by the message m
cs ← tε
cB ← mergeBindings(cB, getBindings(m, apply(cB, t)))
if cs is an end state then
cψ ← completed
raiseEvent(completed, c)

else
raiseEvent(advanced, c)

end if
else if |C| = 0 then
raiseEvent(unmatched,m)

else
raiseEvent(ambiguous,m)

end if

Figure 5.4: Advancing the conversation.

If one candidate conversation was identified, this is advanced to the next ap-
propriate state by setting its current state to be the end state of the transition
that was triggered by the message. Its bindings must also be updated to in-
clude bindings for variables in the transition that were matched against values
in the message. The anonymous variable does not acquire a binding.

The generation of these bindings depends on the context in which any vari-
ables were used. Firstly, each of the fields in the definition of the transition
have the current conversation bindings applied to them (using the apply func-
tion). As discussed in Section 5.5.1, variables with previous bindings that are
used in an immutable context will be replaced, with unbound variables or
those used in mutable context remaining unchanged.

Once this transformation occurs, the getBindings function generates a set of
bindings that arises from comparing the message fields against the appropriate
fields in the transition definition. Where the transition field contains a variable
other than the anonymous variable, a binding between that variable and its
matched value is generate.

Finally, once these new bindings are generated, these are merged with the ori-
ginal bindings that were present in the conversation. This merging is slightly
more complex than a simple union operation, since there can be circumstances
where a binding exists for the same variable in both sets of bindings. This oc-
curs when a variable with a previous binding is used in a mutable context. In
this case, the variable will not be replaced in the apply step, but will then match

100

against a value in the message and generate new bindings in the getBindings
stage. Thus a binding for that variable will exist both in the returned bindings
from getBindings as well as in the original set of bindings (cB). For this reason,
the mergeBindings function gives priority to bindings contained in the second
set of bindings, which can override the previous binding if one exists.

This can be represented procedurally in the following pseudocode, in whichM
is the set of merged bindings to be returned. M is initialised as the original set
of bindings (B1), with bindings being replaced with bindings from the newly-
generated bindings (B2) if they relate to the same variable. Bindings from B2

that relate to different variables are simply added to M .

B1← a set of variable name/value pairs in the form (n, v)
B2← a set of variable name/value pairs in the form (n, v)
M ← B1
for all (n, v) ∈ B2 do

if (n, x) ∈M then
remove (n, x) from M

end if
add (n, v) to M

end for
return M

Figure 5.5: Procedural description of the mergeBindings function.

5.7 Limitations

The choice of FSMs as a model for inter-agent conversations does have a num-
ber of limitations that must be addressed. These are discussed in the following
sections.

5.7.1 Ordering of Actions

In a conversation where actions can happen in any order, this can be difficult
to model in an FSM. For example, consider a system that models the delivery
of and payment for goods. We assume that it is permissible for payment to
occur in advance of delivery or alternatively may happen afterwards.

This issue is illustrated in Figure 5.6, which shows two sequences of actions
(enclosed in parentheses) to get from a situation where goods have neither
been paid for nor delivered to a final state where both actions have occurred.

101

NoPayNoDeliver NoPayNoDeliver
↓ ↓

(payment) (delivery)
↓ ↓

PayNoDeliver NoPayDeliver
↓ ↓

(delivery) (payment)
↓ ↓

PayDeliver PayDeliver

Figure 5.6: Ordering of operations.

Where these are permitted to happen in any order, two intermediate states are
required if both possibilities are to be modelled within a single protocol. This
becomes more unwieldy if there are more than two actions that can take place
in any order.

In this case, it may become necessary to separate a large protocol such as this
into separate protocols that each allow some stricter ordering of operations.
This would require the participating agents to agree on the ordering before-
hand (e.g. they would agree to use the protocol that insists on prepayment for
goods that are to be delivered afterwards).

5.7.2 Synchronisation

A significant limitation of using FSMs to represent agent interaction protocols
is the issue of synchronisation. This problem arises any time a conversation
is in a state from which either participant may send a message. In this situ-
ation, one agent may send a message to move the conversation to a particular
state, while the other agent does likewise before the receipt of this message.
Where this arises, each agent will then have a different view of the state of the
conversation, leading to confusion and misunderstanding in respect of further
messages.

Figure 5.7.2 shows a protocol that has been designed without taking synchron-
isation into account. This diagram represents a protocol designed to imple-
ment a form of English Auction [64]1. In an English Auction, the seller pro-
poses a price to the bidders at which an item is to be sold. If a bid is made
for the item at this price, the price is raised and the seller invites new bids at
the higher price. Eventually, a price is reached for which no bids are received.

1For clarity, the message content fields used by ACRE have been omitted from this example.

102

When this occurs, the bidder that agreed to the highest price is considered
the winner of the auction (subject to that bid being higher than the seller’s
privately-known reserve price).

.

Figure 5.7: English Auction Protocol with Synchronisation Problems.

In Figure 5.7.2, the initiator of the conversation initially sends a cfp message
to invite bids for some item. This brings the conversation to the “started” state,
at which point the bidder is permitted to make a proposal (via the propose
performative). If the seller has found no higher bid, it will accept this bid
(using an accept-proposal message) and the auction ends with this bidder

103

being considered the winner. If a higher bid is found elsewhere, the bid is
rejected (using reject-proposal) and the conversation is returned to the
“started” state. In effect, a bidder has three options on receiving a call for
proposals:

1. Make a proposal at the advertised price, bringing the conversation to the
“proposed” state.

2. Refuse to bid, taking the conversation to the “refused” state and termin-
ating the conversation. This removes the bidder from the auction, as
refusal to bid at one price implies refusal to bid at a higher price.

3. Remain non-committal and await future calls for proposals. This may be
the case if an agent is waiting for external factors to facilitate a bid being
made (e.g. the availability of resources with which to pay the relevant
price).

The synchronisation issue occurs in this “started” state, since in addition to a
bidder being permitted to make or refuse to make a proposal, the seller is also
permitted to send further cfp messages to solicit bids at increasing prices as
bids are received from other participants in the auction.

If a bidder sends a proposal, it will consider the conversation to be in the “pro-
posed” state. As such, a further cfp message from the seller will appear to
be an out-of-turn message. This is despite the fact that both agents are using
the same protocol and that, from the seller’s point of view, the message was
a perfectly valid one to send (as it was sent before its receipt of the proposal
from the bidder).

For this reason, care must be taken when writing protocols to ensure that this
type of situation does not occur. In practice, this will generally mean that at
any particular state of a conversation, the onus is on only one agent to act. This
is, however, not enforced by ACRE as the aim is to enable programmers to do
more with conversations rather than place restrictions upon them.

One example of where it may be desirable to allow this situation to occur
would be in a case where one agent is acting as a proxy between two other
agents who cannot communicate directly. In this case, the two conversing
agents are engaged in a conversation that follows some agreed interaction pro-
tocol. In doing so, they send messages to the proxy agent, which is expected
to forward it to the other conversing agent. In this case, the design of a generic

104

proxying protocol would require messages to be sent in the order specified
in the underlying protocol being followed by the conversing agents. Once
the agreement is made for one agent to act as a proxy, the proxying protocol
cannot insist on any particular ordering of the message exchange, as to do so
would restrict the underlying protocols that can be used. The alternative to
this, if ACRE were to enforce synchronisation restrictions, would be to write
separate proxying protocols for each underlying protocol. This would result
in unnecessary additional effort to create near-duplicate protocols. Thus the
enforcement of synchronisation is left as a task to the protocol developer.

5.7.3 Two Participants in Each Conversation

In the ACRE model of conversations, only two agents may participate in any
one conversation. This is in contrast to other representations such as Agent
UML or Coloured Petri Nets, which can cater for interactions featuring more
than two participants. This is done in order to keep the complexity of protocol
definitions as simple and intuitive as possible.

In the event that an agent wishes to correspond with multiple agents, it must
begin separate conversations with each and manage any relationship between
these at the deliberative layer. An example of this would be where an agent
conducts an auction by sending a call for proposals to multiple participants
and receives bids in reply. Each of these interactions represents a separate
conversation. However, these conversations are indelibly linked, in that they
relate to the same auction. ACRE addresses this limitation by allowing agents
to manage and reason about groups of conversations.

The group management facilities of ACRE (described in more detail in Sec-
tion 7.5.4) are designed to support the raising of events relating to multiple
conversation groups instead of on the individual conversation level. In the
auction example, a suitable event would be that all participating agents have
submitted a bid (and in doing so have all advanced their respective conver-
sations to the same state) or that some reply has been received from all of the
participating agents (including refusals to bid).

Developers are given the facility to define their own custom events and so are
offered a great deal of flexibility regarding the management of multiple related
conversations.

105

5.7.4 Counting Iterations

It is possible to define a protocol that includes a cycle (e.g. the example pro-
tocol used in Section 5.8.3 below). Here, a number of iterations of this cycle
may be desired before the conversation comes to an end by triggering a trans-
ition that exits the cycle. Because of the choice of an FSM for modelling pro-
tocols, it is not possible to enforce a specific number of iterations that must be
performed before breaking the cycle. Similarly, it is not possible to set upper
or lower bounds on the number of iterations that must be performed. Where
a specific number of exchanges of similar messages are required, these must
be represented by separate transitions that do not actually form a cycle in the
FSM.

5.8 ACRE Protocol Examples

This Section presents examples of ACRE protocol implementations. Initially, a
simple request/response protocol is defined and a sample conversation is fol-
lowed to illustrate how ACRE matches messages as part of its automated con-
versation handling. More complex examples are used later in order to show
other common use-cases and illustrate further features of the system.

The examples in this Section assume normal operating conditions. Thus events
such as the cancellation or timeout of a conversation are not considered at this
time. These are discussed below in Section 5.9.

5.8.1 Basic Variable Use: The Request/Response Protocol

Figure 5.8 shows a visual representation of a simple request/response protocol
using Agent UML [129]. This is designed to allow one agent (the “Initiator”)
to ask for information from another (the “Respondent”) on a one-off basis. The
initial message is required to use the request performative, with the response
using inform. At this point, only the performatives are used to identify mes-
sages, with the contents being ignored. For clarity, the content fields of the
messages are omitted, although their inclusion would not affect the function-
ing of the example. Message content is used in later examples.

This protocol can be represented by the Finite State Machine (FSM) shown in
Figure 5.9. Here, the protocol consists of three states: Start at the beginning

106

Figure 5.8: Agent UML representation of Request/Response protocol.

of the conversation when no messages have yet been sent, Requested after the
initial request message has been sent by the Initiator agent, and End after
the Respondent has replied with the required information. The Start state is
highlighted in red as this is the initial state of any conversation that is to follow
the Request/Response protocol.

Figure 5.9: Request/Response Protocol in the Start state.

Each of the transitions is labelled with the details of the message that is re-
quired to trigger the transition. In each case, the performative of the message is
a fixed constant term (request for the initial message, inform for the reply).
Any message that does not contain the correct performative cannot trigger a
transition.

The participants in the protocol, however, are indicated by variables that are

107

matched against the names of the agents. If variables were not used here, then
only agents of specific names would be capable of participating in a conversa-
tion of this type, which would be very restrictive2.

In this example, both the ?initiator and ?respondent variables are used
in an immutable context at all times, meaning that their values cannot change
once set. This means that the agent that sends the initial message (at which
point its name is bound to the ?initiator variable) must be the recipient of
the response that follows.

Given this protocol, suppose the following FIPA ACL message is sent from
an agent named “agent1” to another named “agent2”. This is a fully valid
FIPA ACL message as it contains a performative, which is the only mandatory
parameter [66].

(request

:sender agent1

:receiver agent2

)

This message will match the first transition, as it satisfies all three of the match-
ing rules:

1. The performative of the message is request.

2. The ?initiator variable has not previously been bound and will as
such match any term: in this case “agent1”.

3. Similarly, the ?respondent variable is given the value “agent2”.

The state of the conversation is now shown in Figure 5.10. The Requested state
is now highlighted, since the first message triggered a transition. The variable
bindings are also shown.

If the second transition is now examined, it can be seen that since the two
variables used were in an immutable context, they must only match against
terms that are equal to their values. Thus this transition has, in effect, changed
from its original definition and no longer contains variables that can match
any message content.

At this point, a second message is sent, in the following form:
2This is still permitted by the model, however, as it may be desirable in some systems to

have only one agent that is allowed to send particular messages (an agent named “Manager-
Agent”, for example)

108

Figure 5.10: Request/Response Protocol in the Requested state.

(inform

:sender agent2

:receiver agent1

)

If this is compared with the relevant transition, it also matches:

1. The message’s performative is inform.

2. The message was sent by “agent2” (which is the value bound to the
?respondent variable)

3. The message was received by “agent1” (which is the value bound to the
?initiator variable).

Having triggered this second transition, the conversation enters its final End
state, as illustrated in Figure 5.11. Again, the current state is highlighted in
red. As this is marked as a terminal state, the conversation has now ended.

Figure 5.11: Request/Response Protocol in the End state.

5.8.2 Anonymous Variables: The Status Report Protocol

In the previous example, all variables were used in immutable context. This
section presents a slightly more complex protocol, which involves the follow-
ing additional features:

109

• Use of the anonymous variable;

• Multiple optional transitions;

• Use of message content.

Figure 5.12: Agent UML representation of a Status Report protocol.

The Agent UML diagram for the status report protocol is shown in Figure 5.12.
This protocol is designed so that one agent (the “Initiator”) has a method by
which it can ask another agent (the “Respondent”) about the status of some
object. As with the request/response protocol in the previous section, a con-
versation must begin by the Initiator sending a request message, which may
be replied to by way of an inform message. However, in this case the Re-
spondent also has the option of refusing the request (by means of a refuse

ACL message).

In addition to this, the message content is now important. Whereas in the
previous example, any request message with any (or no) content would be

110

capable of triggering the first transition, in this case it is necessary that the
content of the message match the predicate status(?obj). Here, ?obj is a
variable in the immutable context seen in Section 5.8.1. It may initially match
against any term but its value is fixed thereafter. The status(...) portion,
however, is fixed, and can only match predicates of that type.

When represented by an FSM, the status report protocol is as shown in Fig-
ure 5.13. As the conversation has not yet begun, any conversation following
this protocol is initially in the Start state.

Figure 5.13: Status Report Protocol in the Start state.

From this initial state, suppose the initial requestmessage is sent by an agent
named agent1 to another named agent2. This message takes the following
form:

(request

:sender agent1

:receiver agent2

:content status(router1)

)

In this example, agent1 is asking for an update on the status of a router (iden-
tified as router1). The intention of this interaction is to discover whether the
router is currently functional or not. According to the protocol being followed,
this message matches the transition from the Start state to the Requested state.
As with the previous example, the variables ?initiator and ?respondent

are bound to the names of the participating agents. On this occasion, how-
ever, the message content is also taken into account. The message content
status(router1) is matched against the transition rule status(?obj)

and the variable ?obj is bound with the value router1 in the same way as

111

the variables relating to the conversation participants. Thus future transitions
containing the variable ?obj must match the specific string router1. The
state of the conversation after this initial transition is shown in Figure 5.14.

Figure 5.14: Status Report Protocol in the Requested state.

At this point, the Requested state has two possible outgoing transitions, which
will be triggered in accordance with the next message to be exchanged. The
following message will be sufficient to trigger the transition to the Done state:

(inform

:sender agent2

:receiver agent1

:content statusOf(router1,up)

)

Figure 5.15: Status Report Protocol in the Done state.

The participant names match the ?initiator and ?respondent variables
as illustrated in the previous example. However, this transition makes use of
the anonymous “?” variable in the message content matching rule. Whereas

112

?obj must match the string it was previously bound to (i.e. router1), the
anonymous variable may match any string (in this case, it is the term up that
is matched) but does not cause any variable binding to occur. Having matched
that transition, this message causes the conversation to enter the terminal Done
state, as shown in Figure 5.15.

From the Requested state, the following message would cause the transition to
the Refused state to be triggered:

(refuse

:sender agent2

:receiver agent1

:content status(router1)

)

This message is intended to communicate that the sender is unwilling (or un-
able) to report on the status of router1. This is similar to the previous ex-
ample in that all of the variables in this transition are ordinary named vari-
ables that already have bindings used in an immutable context. Thus, only
the values agent1, agent2 and router1 could possibly match, as is the case
in this message. After transitioning to the Refused state, the conversation is as
shown in Figure 5.16.

Figure 5.16: Status Report Protocol in the Refused state.

5.8.3 Rebinding Variables: Process Documents Example

In the two previous examples, once a variable has had a value bound to it, that
binding persists for the duration of the conversation. Where a variable is used

113

in a transition, the transition can only be fired if the variable’s previous bound
value is matched. However, in some circumstances it may be desirable that the
values that are bound to the conversation’s variables be permitted to change
in specified places. One example is the Process Documents protocol illustrated
in the Agent UML diagram in Figure 5.17 and the FSM shown in Figure 5.18.

Figure 5.17: Agent UML representation of a Process Documents protocol.

In this example, it is assumed that the participating agents are involved in a
production line that processes text documents. One agent acts as the “Man-
ager” that controls which documents are to be processed by the processing
agents. In the Process Documents protocol, the initiator of the conversation is a
“Processor” agent that is seeking information on which document(s) it should
process. Initially, it tells the respondent (the Manager agent) that it is ready
to perform such processing. Once this has been done, the Manager agent will

114

Figure 5.18: Process Documents Protocol in the Start state.

request that the Processor agent perform the processing of a document with a
specified unique identifier. The Processor can react to this either by processing
the document and informing the Manager of this, or by refusing to process the
document. Refusal ends the conversation. For as long as the Processor agent
continues to process the documents it has been asked to handle, the Manager
will continue to request that more documents be processed. The use of vari-
ables in this example ensures that the documents referred to in the replies from
the Processor have the same identifiers as those it has been asked to process.
However, it is not desirable for the Manager to be restricted from requesting
different documents each time.

Initially, the conversation is in the Start state, as illustrated in Figure 5.18. The
conversation is advanced by the Processor agent sending an inform message,
as follows:

115

(inform

:sender processor

:receiver manager

:content ready

)

The transition this message triggers insists that the performative of the mes-
sage be inform and the content be the exact term ready, both of which
are present in the message. Additionally, the variables ?initiator and
?respondent bind to the values processor and manager respectively, in
a similar way to the previous examples. Once this message has been sent, the
conversation enters the Waiting state, as illustrated in Figure 5.19. As with
the previous examples, these bound variables are replaced by their values in
further transitions.

From this state, the next available transition is triggered by the following mes-
sage:

(request

:sender manager

:receiver processor

:content process(doc123)

)

This message, sent by the Manager agent, indicates that it wishes the processor
to process the document with the identifier doc123. The participants match
the transition rule in the same way as with the previous examples. With regard
to the content, this protocol uses the mutable named variable ??docid. As
this variable does not yet have any bindings, it acts in the same way as the
other variables to date. It matches the term doc123 and this binding is added
to the conversation. The result of this transition to the Requested state is shown
in Figure 5.20.

As with the Status Report protocol, there are two possible transitions available
from the Requested state. Both contain the variable ?docid in their content
matching rule. As this has now been associated with a binding following the
previous transition, these variables can only match the term doc123.

If the Processor agent decides to proceed with the processing of the specified
document, it communicates its success to the Manager agent by means of an
inform message as follows:

116

Figure 5.19: Process Documents Protocol in the Waiting state.

(inform

:sender processor

:receiver manager

:content processed(doc123)

)

As this matches the transition to the Waiting state, the conversation state is
now as shown in Figure 5.21.

The conversation has now returned to the Waiting state, although on this oc-
casion the ?docid variable has a binding associated with it, which was not
the case in Figure 5.19. It is at this stage that the necessity for a mutable con-

117

text for variables becomes apparent. Had the transition between the Waiting
and Requested states used the variable ?docid in its immutable form, then
the conversation could only proceed from this stage if the manager agent was
to request the processor to process the same document again (i.e. document
doc123). Thus, as mutable context was used, ??docid can once again match
any string in the same way as anonymous or unbound variables. If it does
so, it will cause the binding for the ?docid variable to be replaced (recall that
these refer to the same named variable and it is only the context that is altered
by the use of the different “??” sigil). This will occur in the event of a message
such as the one below being sent.

Figure 5.20: Process Documents Protocol in the Requested state.

118

(request

:sender manager

:receiver processor

:content process(doc1024)

)

Because of the behaviour of the mutable ??docid variable, this message will
trigger the transition back to the Requested state, causing the value of the
?docid variable to be rebound to doc1024. From Figure 5.22, it can be seen
that because of this rebinding, the messages necessary to move from the Re-
quested state have changed from the first time the conversation was in this state
(as shown in Figure 5.20.

Figure 5.21: Process Documents Protocol having returned to the Waiting state.

119

Figure 5.22: Process Documents Protocol having returned to the Requested
state.

The mixture of the mutable and immutable usages of the ?docid variable
are essential to ensure the correct functioning of this protocol. As previously
stated, the mutable use of the variable in the transition from the Waiting state
allows the manager to request the processor to process any document, regard-
less of what has previously occurred in the conversation. However, once such
a request has been made, the processor must reply with reference to the last
document it was asked to process. This is enforced by the immutable use of
the variable in the transitions that require the processor to send the message.

In order to finish the example, it can be seen by reference to the examples thus
far that once the conversation is in the Requested state, a refuse message from
the processor to the manager with the content process(doc1024)will cause
the conversation to reach the terminal End state.

120

5.9 Exceptions to Interaction Protocol Flow

The preceding examples illustrated situations where conversations proceeded
from the underlying protocol’s initial state to some terminal state. There are,
however, many situations where a conversation may not proceed in this way.
For example, one participant may wish to cancel an interaction before the com-
pletion of the conversation (e.g. having begun an auction, the agent decides
not to proceed as another agent has made a one-time offer for an immediate
agreement). Alternatively, an agent may wish to add a timeout condition to a
conversation so a failure (or simply a failure to act) of a respondent is handled
correctly and does not cause the conversation to hang. A third option occurs
when a message is exchanged that does not fit the protocol definition. The
mechanism by which ACRE deals with these situations is outlined in the fol-
lowing Sections.

5.9.1 Intentional Termination

In a system using one-off message passing, there is no explicit expectation of
any particular message being sent at any given time (although such an ex-
pectation may be implied from the agent code itself). In a conversation-aware
system, however, a conversation only ends once a terminal state is reached,
according to the underlying interaction protocol. One consequence of this is
that if an agent does not wish to continue with the interaction, it must either
take the conversation through to completion regardless, or else leave the con-
versation stuck in the same state indefinitely after it declines to proceed any
further.

One solution to this is to allow agents the ability to explicitly cancel a con-
versation. The FIPA standard interaction protocols go some way towards
providing such a facility. Each standard protocol specification also includes
the fipa-cancel meta-protocol, which allows the initiator of a conversation
to cancel that conversation at any point. This meta-protocol was previously
discussed in Section 4.4.6.1.

In terms of adapting this meta-protocol to ACRE, a few issues arise:

• The FIPA standards state that the meta-protocol may be used to cancel an
existing conversation and must be initiated by the original initiator of the
conversation that is to be cancelled. ACRE does not place this restriction

121

on cancellation. As the effect of a cancellation is that a conversation is
prematurely terminated, it is not important at what point this occurs.
Thus any issues with synchronisation are moot (particularly as the cancel
meta-protocol cannot be done unilaterally and requires agreement from
the other agent).

• The meta-protocol specifies that the content of the cancel message
should be the “cancelled communicative act”. However, the meta-
protocol is not intended to cancel individual communicative acts: its in-
tention is to cancel a conversation. Elsewhere in the FIPA standards [66],
it is noted that the cancel performative has implicit content when used
in conjunction with the conversation-id parameter. As ACRE uses
cancel to cancel conversations, the cancellation messages it sends in-
clude a conversation-id but have no content.

• The cancel meta-protocol includes an inform-done message. How-
ever, inform-done is not a performative listed in [68] (as discussed
in Section 4.4.7). In any event, it is potentially dangerous to send a
message as part of a cancellation meta-protocol that may be confused
with communications in the underlying conversation (as, according to
FIPA, the conversation-id parameter values should be the same. For
this reason, ACRE sends a standard acknowledgement in response to a
cancel message. This uses the inform performative and makes use of
the in-reply-to parameter of FIPA ACL. The initial cancel message
has no content, but contains a reply-with value of “cancel”.

• In the same way, failure messages may be used in the context of other
interaction protocols also, so ACRE also seeks to use a well-defined mes-
sage content so such confusion may be avoided. Communicating that the
cancellation of a conversation has failed is done by means of a failure
message with the content and with “cancel” as the in-reply-to para-
meter value.

5.9.2 Timeouts

In the context of conversation management, it is important for an agent to be
capable of dealing with late responses and expected responses that are never
received. The latter issue can result in agents waiting indefinitely for events to
occur before acting, for example when awaiting bids from all bidders as part

122

of an auction. For this reason, ACRE facilitates the setting of timeouts on all
messages that are sent as part of a conversation. This is done by making use of
the FIPA reply-by parameter [66].

This parameter is required to hold the time “expressed according to the
sender’s view of the time on the sender’s platform”. Thus the FIPA stand-
ard ignores the issue of cross-platform time synchronisation and timezone is-
sues. Additionally, it does not specify what format this parameter should take.
ACRE does not seek to address these issues at present. The value used for
the parameter is the Unix epoch time3 according to the sender’s host. This is
capable of being converted to a local time on the receiving platform if desired.

The timeout can be set by the agent at any point during a conversation (includ-
ing prior to the first message being sent). Once set, the reply-by parameter is
set for all messages sent as part of that conversation. It may be changed for fu-
ture messages at any time. Once a conversation has reached the timeout time
without a response being received, ACRE raises an event to inform the agent
of this fact. The mechanics of this are described in more detail in Chapter 7.

5.9.3 Inadvertent Termination

In systems depending on one-off message passing, a message that does not
conform to the expectations of the recipient can be difficult to identify and
may frequently go unnoticed. This is because many agent programs are im-
plemented by way of rules that are triggered whenever an anticipated situ-
ation comes about (e.g. that a message of a particular type has been received).
Where rules of this type are inadequate, however, is in identifying situations
where an unanticipated situation occurs (e.g. that a message has been received
but it does not trigger any of the existing rules).

ACRE aids this situation in matching all incoming messages against known
conversations and protocols: the latter to see if the message is capable of ini-
tiating a new conversation. If the message fails to match any of these, ACRE
will raise an event to the agent to make it aware of this situation.

There are numerous reasons why a message may be received that cannot be
successfully matched to a new or existing conversation:

• The message specified the conversation-id of an existing conversa-

3This is defined as the number of seconds that have elapsed since midnight on 1st January
1970 Coordinated Universal Time (UTC), excluding leap seconds.

123

tion but the content or performative did not match an active transition.

• The message specified an unknown conversation-id but the mes-
sage was not capable of beginning a conversation following the specified
protocol.

• The message specified a protocol that was not known to the recipient.

• The message did not specify a conversation-id but could neither be
matched against an active conversation nor begin a conversation follow-
ing any known protocol (unmatched message).

• The message did not specify a conversation-id but it is capable of
advancing or beginning multiple conversations (ambiguous message).

The FIPA standards provide for a not-understood performative to be used
whenever a message is received that is not recognised by the recipient [66, 68].
ACRE also provides the facility to send such a message whenever an un-
matched message is received. This message contains a conversation-id

parameter that matches the message that was not understood.

5.10 Comparison with Related Systems

Having outlined how ACRE represents protocols and handles conversations,
it is important to draw comparisons with other approaches to interaction. The
following Sections discuss some of the design decisions involved in the de-
velopment of ACRE, particularly where they differ from those taken by other
researchers in tackling the problem of structured agent communication.

5.10.1 Other Finite State Machine Representations

As discussed in Section 3.3.1, the use of FSMs has been a common method of
modelling agent interaction in a number of systems. ACRE’s use of FSMs is,
though rooted in a similar theoretical model, quite different to several of these
other implementations.

One key difference is the decision to model a conversation itself as an FSM in-
dependent of the internal workings and reasoning of the participating agents.
This is in contrast to systems such as COOL, AgenTalk and JADE. These use

124

separate FSMs for each of the participants in a conversation, mixing agents’
own actions with the messages exchanged. This was not considered to be a
suitable approach for ACRE for two principal reasons. Firstly, because ACRE
is intended for use with a variety of AOP languages and frameworks, it is
important to maintain a clear distinction between the actual exchange of mes-
sages and the reasoning surrounding this. Agent developers should be left free
to implement their agents’ decision-making as they see fit, in accordance with
the features and capabilities of their chosen tools. Secondly, the separation of
a protocol into multiple roles increases the difficulty of verifying whether two
agents are compatible and whether a protocol is being followed correctly by its
participants. Using a single protocol definition means that an outside observer
can monitor the validity of a protocol implementation in any AOP language
that supports the sending of FIPA-compliant messages.

Another distinction can be drawn between ACRE and the KaOS model of
FSMs, which allows silence to constitute a valid transition between states. Si-
lence is a difficult concept to model, particularly as it is indistinguishable from
a failure of a participating agent or the communications channel. Additional
complexity arises from needing to decide the time lapse required to constitute
silence. Certain delays in the communication of messages or in the delibera-
tion of agents are unavoidable. Thus there is a danger that in setting too short
a time period, a transition may incorrectly be triggered despite another parti-
cipant intending to send an explicit reply. ACRE’s approach is that any trans-
ition can only be triggered by active communication, which leads to greater
clarity of intention. The support for conversation timeouts allows an agent to
be notified when an expected reply has not been received, so that it may react
according to a developers wishes (e.g. cancelling the conversation, verifying
that an error has not caused the other participant to crash).

The other principal distinction between ACRE and other FSM models is that
ACRE allows the content of messages to be specified in the protocol in addition
to the performative and the participants. Representations of interaction proto-
cols (including those defined by FIPA) are typically created to be generic and
to be widely applicable to numerous situations. These types of protocols are
possible to define in ACRE if the protocol developer decides against specify-
ing any particular constraints on permissible message contents. However, the
internal handling of messages within agents frequently relies on the content of
those messages. For this reason, it is desirable to permit developers of MASs
to create clearly-defined protocols that can be used to verify that every aspect

125

of agent communication is being performed correctly. If an agent is created to
react to messages with a particular content, this can be represented within the
protocol definition.

In allowing message content to be specified, it is important to be mindful of
the fact that the choice of a content language will affect the compatibility of
ACRE with existing AOP languages. A balance must be struck between re-
maining compatible with as many AOP languages as possible and allowing
clear protocols to be defined. As the vast majority of AOP languages are logic-
based, the choice of a similar content language allows for wide compatibility.
It should be noted that, in contrast, many previous FSM representations are
inherently incompatible with other systems as they integrate directly into a
specific AOP language.

5.10.2 Global Session Types

Global session types (introduced in Section 3.3.5) are similar to FSMs in the
sense that they consist of transitions triggered by the sending of messages.

The concept of a fork construct in a global session type (where a number
of communications can occur in any order) is one feature that is not easily
captured by an FSM. This is a limitation outlined in Section 5.7.1.

The integration of global session types into Jason is one of the few approaches
to cater for the message content in addition to performatives and participants.
This allows typed data to be present in messages, with the correct type being
checked at run-time. However, verification that related messages refer to the
same item is not currently possible. ACRE’s bound variables allow for this
type of checking to occur.

In addition, the current prototype implementation only supports successful,
verified communications. The agent is not aware if its proposed message does
not match the protocol specified by the global session type and so a miscom-
munication will cause silent failure of the conversation. In contrast, ACRE can
make an agent aware when exceptions or cancellations occur, to facilitate the
agent in attempting recovery.

126

5.10.3 Coloured Petri Nets

In choosing an FSM as the representation of ACRE protocols, it was necessary
to balance the superior support for concurrency offered by Coloured Petri Nets
(CPNs) against the increased complexity this incurs (CPNs are introduced in
Section 3.3.2). Equivalent representations of a simple KQML register pro-
tocol have previously been shown in Figures 3.8 (FSM) and 3.9 (CPN) (both
diagrams are taken from [40]). As can be seen from these illustrations, the
CPN representation has much greater complexity, even for a simple protocol.

A key aim of the ACRE system is to formulate an intuitive system that de-
velopers can easily become familiar with and design interaction protocols for.
For this reason, it was decided that the greater simplicity of an FSM-based
model was preferable to the more complex CPNs. This involves the tradeoff
that for complex interactions, some protocols may need to be split into mul-
tiple sub-protocols with the agent reasoning capabilities being used to man-
age the interplay between these. Additionally, some adjustments are required
to handle concurrency where asynchronous communication is used. In its
simplest form, this requires that only one agent is permitted to act at any par-
ticular time.

It is believed that imposing the use of complex CPN-based protocols for
even simple interactions would act as a significant barrier to the uptake of
a conversation-handling framework for those developers more accustomed to
communication via individual unrelated messages.

5.10.4 Approaches based on Semantics

A number of approaches to agent interaction are based on various models of
semantics, including Commitment Machines (discussed in Section 3.3.7), Ex-
pectations (Section 3.3.8) and Mental Models (Section 3.3.9). These solutions
tackle interaction from a different approach, where agents make use of their
autonomy and reasoning capabilities to proactively negotiate communication
patterns based on their understanding of the meaning of the communication.

ACRE aims to be as widely applicable as possible, and so efforts have been
made to define it in such a way as to be compatible with a variety of existing
AOP languages and frameworks. As noted in the previous comparison with
other FSM-based solutions, the ACRE approach does not attempt to interfere
with the mental model or reasoning process of the agents that use it. Addition-

127

ally, it makes minimal assumptions about the nature of agents’ mental models
and the concepts they are based on. An agent may not have any concept of
a social commitment, or of expectations. Even for the semantics of individual
messages based on speech act theory, as defined for FIPA ACL and KQML,
support varies widely amongst AOP toolkits. As discussed in Section 3.2.2,
this ranges from systems that do not support semantics at all, to those with
partial support.

Because of this treatment of the semantics of communication, the approach of
ACRE is to focus on a more traditional approach to communication where a
developer engineers an interaction protocol at design time. This then informs
the development of the agents that are expected to follow it, as well as allowing
for runtime verification that specific protocols are being followed by conver-
sation participants. Although this is a less flexible approach, it does provide a
framework within which interaction can occur. The autonomy of the particip-
ating agents is still respected, as their own deliberation will dictate how, when
and if they engage in interaction.

5.11 Summary

This Chapter has served as an informal introduction to the ACRE system. In
particular it concentrated on how interaction protocols are defined, how they
relate to the messages that are exchanged between agents, and how the ACRE
system deals with these in grouping messages into conversations. In addition,
it considers situations where exceptional circumstances occur (e.g. cancella-
tion, timeout, etc.) that cause conversations to terminate abnormally.

The following Chapters provide more detail on ACRE. Chapter 6 shows the
operational semantics that underlie ACRE’s automated conversation manage-
ment. As part of this illustration, the informal examples from this Chapter
(seen in Section 5.8) are re-used in a more formal setting to show how the same
conversations can be modelled using the operational semantics supplied. Fol-
lowing this, Chapters 7 and 8 show two architectures for the assimilation of
ACRE into an existing MAS framework. These are a generic architecture and
a specific concrete implementation respectively. The generic architecture is in-
tended to be a general architecture suitable for integration with a variety of
MAS systems whereas the concrete implementation illustrates the result of in-
tegration with the Agent Factory MAS framework.

128

CHAPTER

SIX

ACRE Formal Model

6.1 Introduction

It has become common for creators of AOP languages to specify the semantics
of their languages using operational semantics [134]. Following the informal
description of ACRE in Chapter 5, this chapter outlines the formal model of
the ACRE system in a similar way to that of Jason [19, 159].

6.2 Assumptions of the Model

In order for the model in this Chapter to be applicable, a number of assump-
tions are required to be made in advance. These assumptions are as follows:

• Messages are sent between only two agents. The FIPA ACL Message Struc-
ture Specification allows for a message to have multiple recipients al-
though these must be explicitly declared as a set of agent identifiers [66]
so the recipients are specifically enumerated in the message1. In the
ACRE model, these are treated as separate communications that happen
to have the same content.

• Variables cannot appear in the messages themselves. It is possible that a term
that looks like a variable may be included, but this is not treated as such.
Thus, the recursive application of bindings is not required, as the value
of a binding cannot itself contain a variable that may have its own asso-
ciated binding.

1Some agent frameworks have extended this model to allow wildcard matching of agent
identifiers within ACL messages (e.g. [111]) This is a non-standard extension and as such it is
not supported by ACRE.

129

• The protocol developer has avoided concurrency issues, having ensured that
no state exists from which either participant may advance the conversa-
tion.

• The protocol developer has created a valid deterministic finite state machine
by ensuring that multiple transitions from the same state cannot be
triggered by the same message. If such transitions exist within the pro-
tocol definition, a non-deterministic finite state machine has instead been
created, which is outside the scope of this formal model.

• The content of a message is a predicate, and so more complex formulae are
not supported.

6.3 Notation

Uppercase letters are used to indicate data structures holding multiple items
(lists, sets). Lowercase letters indicate individual items.

Parentheses are used to indicate tuples. Each entity modelled in this Chapter
is represented by a fixed-length tuple of values that may be of various types.
Square brackets are used to represent variable-length lists of similar items (e.g.
a queue of messages). Angle-brackets are used for expressions written in Eind-
hoven Quantifier Notation [6].

For convenience, where a symbol is used to denote some entity that is nor-
mally represented by a tuple, a non-numeric subscript is used to refer to an
individual element in that tuple. For instance if a is defined as the tuple (b, c, d)

then ab refers to the named element b, which is the first element in the tuple
representing a. This is the same notation that is used in [19, 159].

Numeric subscripts are used to donate the position of an item within a func-
tion, predicate or list. E.g. a4 is the fourth element in the list [a1, a2, a3, a4, a5].
The only non-numeric subscripts used for list positions are n, relating to the
length of the list, and i, which refers to a particular list index.

Where a value is undefined (e.g. a message does not have a conversation iden-
tifier included), ⊥ is used to indicate this undefined value.

The valence of a function is defined as the number of arguments it has. The
notation |f | represents the valence of the function f , i.e.:

|f | = n ⇐= f = f ′(t1, . . . , tn)

130

6.3.1 Use of Ellipses

Ellipses (. . .) are used to indicate ranges of values in lists, predicates and func-
tions. As the use of ellipses can be ambiguous in some situations, this sec-
tion clarifies some properties of ellipse-based ranges as they are used in this
Chapter.

Sample usages are as follows:

• f(t1, . . . , t5) = f(t1, t2, t3, t4, t5)

• p(t1, . . . , t3) = p(t1, t2, t3)

• [t1, . . . , t7] = [t1, t2, t3, t4, t5, t6, t7]

In each case, the subscript of t indicates its index within the function, predicate
or list. The use of ellipses indicates that all integer subscripts between the
first and last values are included. More formal definitions of each of these are
presented in Section 6.4.

The ellipses are typically used to indicate a function, predicate or list with
variable length. This type of declaration is as follows (declaring a function
and a predicate with n arguments, and a list with n elements):

• f(t1, . . . , tn)

• p(t1, . . . , tn)

• [t1, . . . , tn]

Two special cases must be defined for situations where the end of the range
is not greater than the beginning. Firstly, the one-point range is defined as
follows:

• f(t1, . . . , tn) = f(t1) ⇐= n = 1

• p(t1, . . . , tn) = p(t1) ⇐= n = 1

• [t1, . . . , tn] = [t1] ⇐= n = 1

Finally, an empty range is defined as follows:

• f(t1, . . . , tn) = f() = f ∧ f ∈ Const ⇐= n < 1

• [t1, . . . , tn] = [] ⇐= n < 1

131

6.4 Language

The language of ACRE (denoted by LACRE) is represented using statements
of predicate logic. The principal types of term that are used in this logic are
constants, variables and functions. Const, Var and Funct are defined to be the
set of constants, variables and functors respectively. ΘACRE is the set of all
terms allowed in the language.

The set of valid terms begins with the inclusion of constant terms. The set
of constant terms is denoted by Const. All constants are valid terms in the
language.

• c ∈ Const⇒ c ∈ ΘACRE

Any time a variable is used within the language, it must be accompanied by an
associated context. This context may either be mutable (i.e. it may override an
existing binding) or immutable (it may not override an existing binding). Thus
the set of variable instances (VarInst) is defined as a set of tuples of the form
(v, c) where v is a variable and c indicates the context in which it has been used.
The effect of mutable and immutable variables is discussed in Section 5.5.1.
These variable instances are also considered valid terms.

• VarInst = Var× {mutable, immutable}

• v ∈ VarInst⇒ v ∈ ΘACRE

Any function consisting of a functor and a number of arguments that are valid
terms of the language is itself also a valid term:

• f ∈ Funct ∧ 〈∀i : 1 ≤ i ≤ n : ti ∈ ΘACRE〉 ⇒ f(t1, . . . , tn) ∈ ΘACRE

The language LACRE may now be defined. Firstly, Pred is defined as the set
of predicate symbols. Predicates whose arguments are valid terms of ΘACRE

comprise the language, as follows:

• p ∈ Pred ∧ 〈∀i : 1 ≤ i ≤ n : ti ∈ ΘACRE〉 ⇒ p(t1, . . . , tn) ∈ LACRE

6.4.1 Grounded Language

Some entities modelled in this language do not permit the use of variables.
To facilitate this, a separate but related language is defined. GACRE is the

132

grounded language of ACRE, which is similar to LACRE with the exception
that neither variables nor variable instances are permitted.

Firstly, it is necessary to define a subset of ΘACRE to be the set of grounded
terms permissible in the grounded language. This set of grounded terms is
denoted by ΓACRE .

• c ∈ Const⇒ c ∈ ΓACRE

• f ∈ Funct ∧ 〈∀i : 1 ≤ i ≤ n : ti ∈ ΓACRE〉 ⇒ f(t1, ..., tn) ∈ ΓACRE

The set of valid formulae in the grounded language is now defined as follows:

• p ∈ Pred ∧ 〈∀i : 1 ≤ i ≤ n : ti ∈ ΓACRE〉 ⇒ p(t1, . . . , tn) ∈ GACRE

From these definitions, it can be seen that the following relationships hold:

• ΓACRE ⊂ ΘACRE

• GACRE ⊂ LACRE

Thus any functions that operate on elements of ΘACRE will also be applicable
to grounded terms in ΓACRE .

6.5 Entities

Within the model, there are a number of entities that must be represented, so
that operations can be performed on them. These are represented by means of
tuples and are outlined in the following sections.

6.5.1 Bindings

A binding is the association of a value to a variable. The use of bindings within
ACRE is described in Section 5.5.1. In this model, Bindings is the set of all
possible bindings that can be made. It is described as follows:

Bindings = V ar × ΓACRE (6.1)

This results in a set of bindings in which each element is a pair (v, c) where
v is a variable (i.e. v ∈ V ar) and c is a grounded function that is bound to it

133

(i.e. c ∈ ΓACRE). Each variable should be unique within a set of bindings. This
means that the following property should always hold for any set of bindings
B ⊂ Bindings:

∀(v, c) ∈ B : (¬∃(v′, c′) ∈ B : v = v′ ∧ c 6= c′) (6.2)

This restriction requires care in adding a new binding into an existing set of
bindings. When a variable is used in a mutable context, it may match against
some function despite the fact that it already has a binding associated with
it. When combining existing bindings with the new bindings arising from
unifying this variable with its new value, care must be taken to ensure that the
above restriction is not violated. This can be done by using the combine(s1, s2)
function presented in Section 6.7.5.

6.5.2 Performative

One key aspect of ACL communication is the performative (see Section 4.2),
which must be present in each message exchanged between agents. We define
Perf, which is the set of valid FIPA performatives, as follows:

Perf = {accept-proposal, agree, cancel, cfp, confirm, disconfirm, failure,

inform, inform-if, inform-ref,not-understood, propagate, propose,

proxy, query-if, query-ref, refuse, reject-proposal, request,

request-when, request-whenever, subscribe} (6.3)

This definition arises from the FIPA Communicative Act Library Specifica-
tion [68]. However, nothing in this formal model prevents the use of an altern-
ative definition of Perf (for example for use with a different Agent Communic-
ation Language such as KQML). In either case, a performative will always be
a single constant value, thus the principal restriction on the domain of Perf is
as follows:

Perf ⊂ Const (6.4)

134

6.5.3 Message

Messages are the means by which agents participate in conversations. This
definition is based on the FIPA ACL message standard [66]. The set of
messages is denoted by Messages, which is a set of 6-tuples of the form
(s, r, c, φ, p, x) where:

• s ∈ Const is the unique identifier of the agent that was the sender of the
message. This is the value in the :sender field of a FIPA ACL message.

• r ∈ Const is the unique identifier of the agent that was in receipt of the
message. This is a value from the :receiver field of a FIPA ACL mes-
sage. Although the FIPA standard allows multiple recipients to be spe-
cified, ACRE’s approach to this is outlined in Section 6.2.

• c ∈ Const is the unique identifier of the conversation to which the mes-
sage belongs. This may be undefined (⊥) if the sender does not support
conversation management. This represents the :conversation-id

field of a FIPA ACL message.

• φ ∈ Const is the unique identifier of the protocol that the conversation
is following. This may also be undefined if the sender does not support
conversation management. This is the :protocol field of a FIPA ACL
message.

• p ∈ Perf is the performative of the message. This is the :performative
field in a FIPA ACL message.

• x ∈ GACRE is the actual content of the message, as contained in a FIPA
ACL message’s :content field.

6.5.4 State

As illustrated in Chapter 5, ACRE Protocols are represented as Finite State Ma-
chines. In order to use such a model, it is necessary to define the states a con-
versation may be in, along with the transitions that allow it to move between
states.

States are represented in the set States, which contains 2-tuples of the form
(ν, φ), where:

• ν ∈ Const is the name of this state.

135

• φ ∈ Const is the unique identifier of the protocol this state is related to.

6.5.5 Transition

At any point in time, a conversation will be in one particular state. The state of
a conversation can only change in the event of a message being sent between
the participating agents that matches a transition originating from that state.

The majority of the elements of a transition are terms that are to be matched
against elements of messages that are sent and received by participating
agents. In each case, variables may be used so that data from messages may
be stored for re-use later in the conversation.

Transitions is a set of transitions represented by the tuples of the form
(φ, σ, ε, s, r, p, x), where:

• φ ∈ Const: The unique identifier of the protocol to which this transition
belongs.

• σ ∈ Const: The name of this transition’s start state.

• ε ∈ Const: The name of this transition’s end state.

• s ∈ (Const ∪ {v ∈ VarInst : vc = immutable}): The name of the sending
agent. This may be a constant value (which will only match against a
specific agent identifier) or an instance of a variable used in an immutable
context.

• r ∈ (Const ∪ {v ∈ VarInst : vc = immutable}): The name of the receiving
agent. The same restrictions apply to this field as to the message sender.

• p ∈ Perf: The performative of the message.

• x ∈ LACRE : The content of the message that will trigger this transition.

A transition represents a mechanism by which the state of a conversation may
be altered. Transitions are intended to be matched against ACL messages, with
a conversation advancing whenever a message matches an active transition.

As the names of states are defined as constant terms in Section 6.5.4, they must
also be represented as such in a transition between states. The names of par-
ticipating agents may be defined as either constants or variable instances. A

136

constant value in these fields indicate that only messages to and from spe-
cific agents may match the transition. Variables can match against any agent
names, thus allowing any agent to send or receive a triggering message. How-
ever, these variables may be replaced with constants according to the bindings
associated with the appropriate conversation. Variables used in the sender or
receiver fields may not be in mutable context (see Section 5.5.1 for an explana-
tion of what is meant by “mutable context”).

6.5.6 Protocol

The set of protocols is denoted by Protocols, which is a set of 5-tuples of the
form (φ, S, T, ι, F), where:

• φ ∈ Const: The unique identifier of this protocol.

• S = {s ∈ States : sφ = φ}: The set of the states that are used in the
protocol’s finite state machine. The protocol identifier in each state must
match the unique identifier of this protocol (φ).

• T = {t ∈ Trans : tφ = φ ∧ (∃s ∈ S : tσ = sν) ∧ (∃s ∈ S : tε = sν)}: The
set of transitions that are part of this protocol. These transitions must all
begin and end at states that are contained in S.

• ι ∈ {sν : s ∈ S ∧ (¬∃t ∈ T : tε = sν)}: The name of the initial state of any
conversation following this protocol. This must be the name of a state
that is contained in S, with the additional restriction that no transitions
may end at that state. A well-formed protocol may not have multiple
states that fulfil this criterion.

• F = {sν : s ∈ S ∧ ¬∃t ∈ T : tσ = sν}: The set of names of states that
are considered to be final states for any conversation following this pro-
tocol. In a similar way to the initial state, these states must be contained
in S and no transitions should begin at a final state. Unlike the initial
state, there is no restriction on the number of final states a protocol may
have. This includes the possibility of a protocol having no defined final
states, in which case it will not reach a natural conclusion and must be
interrupted in some other way.

137

6.5.7 Conversation

It is a conversation that acts like a functioning finite state machine, rather
than a protocol itself. Protocols define the finite state machines that are ex-
ecuted as conversations. A conversation represents an instance of two agents
communicating in a way that follows a particular protocol. The set of all
conversations is denoted by Conversations and contains 7-tuples of the form
(φ,A, s,H, c, B, ψ), where:

• φ ∈ Const The unique ID of the protocol that this conversation follows.

• A ⊂ Const: Set of participating agent names.

• s ∈ {pS : p ∈ Protocols ∧ pφ = φ}: The name of the current state of the
conversation.

• H = [m1, ...,mn] ∧ 〈∀i : 1 ≤ i ≤ n : mi ∈ Messages〉: A list of past
messages in this conversation.

• c ∈ Const: The unique identifier of this conversation.

• B ⊂ Bindings: A set of variable bindings that apply to this conversation.

• ψ ∈ {active, completed, failed}: The conversation status.

6.5.8 Event

Events represent information that may be accessed by the intentional layer of
an agent, in order to support reasoning about conversations. They represent
the fact that errors have occurred in matching messages to conversations, or
that conversations may be begun, advanced or completed.

An event is contained in the set Events and defined as the tuple (d, o), where:

• d ∈ Const: A description of the event that has occurred.

• o ∈ Messages ∪ Conversations: The message or conversation to which
this event relates.

138

6.5.9 Conversation Manager

The key element in this model is the Conversation Manager that is charged
with identifying messages that are associated with particular conversations,
advancing conversations, raising events to the agent’s intentional layer, and
other associated tasks. Within an ACRE-enabled Multi Agent System, each
agent has its own Conversation Manager to take care of reasoning about the
conversations in which the agent is engaged. The operational semantics for
the operation of a Conversation Manager are presented in Section 6.8.

A Conversation Manager is represented by the tuple (n,M,C, P,E, s, µ),
where:

• n ∈ Const is the name of the agent to which this conversation manager
belongs.

• M = [m1, ...,mn] ∧ 〈∀i : 1 ≤ i ≤ n : mi ∈ Messages〉 is a Message queue,
which is a list of messages that have been sent or received by the agent
since the last iteration of message handling. These are assumed to be
stored in chronological order of receipt, with the earlier messages at the
beginning of the list.

• C ⊂ Conversations is a Conversation Store, which is a set that contains
all the conversations in which the agent is participating.

• P ⊂ Protocols is a Protocol Store, which is a set of protocols about which
the agent is aware.

• E ⊂ Events is a set of Events that may be accessed by the intentional
layer of the agent. These events are raised by the Conversation Manager
during its reasoning process, to be consumed by the agent afterwards.

• s ∈ {start, initialise,match, fail, new, update, done} is the state of the
conversation management system. A description of what is meant by
each of these states, along with their semantics, is given in Section 6.8.

• µ is the memory of the conversation management system. Its purpose is
to record which conversations a given message can potentially advance.
It is a tuple of the form (m,C) where:

◦ m ∈Messages is the message that is currently being matched.

◦ C ⊂ Conversations is a set of conversations that have been matched
to m as a result of identifying that m is capable of advancing them.

139

6.6 Predicates

In the defined logic, a number of predicates are defined that are used in reas-
oning about the entities described above.

6.6.1 Matching

Before any predicates can be defined that deal with the entities described
above, it is necessary to define what it means for two items to match. Because
of the nature of ACRE, one of the operands in each case will be a grounded
term or predicate. This is as a result of the fact that these are sourced in mes-
sages that are exchanged, which cannot contain variables. Variables can only
occur in protocol definitions (and by extension conversations and transitions
also). For the purposes of this model, three types of matching are necessary:

• tmatches is used to test if individual terms match (i.e. one term is an
element of ΘACRE and the other is an element of ΓACRE).

• lmatches: is used to test if a list of terms matches (i.e. to match two lists of
terms, one of which contains elements of ΘACRE and the other of which
contains elements of ΓACRE).

• pmatches is used to match predicates (i.e. one that is an element of LACRE
and one that is an element of GACRE).

In each case, variables are taken into account, so as to ensure that the same
variable cannot match against two different values in the ground argument.

6.6.1.1 TMatches

This predicate equates to true if two given terms match. As mentioned above,
the second term is a grounded term, since it originates in a message.

Arguments:

• s1 ∈ ΘACRE

• s2 ∈ ΓACRE

140

tmatches(s1, s2) ≡
true s1 ∈ VarInst
true s1 ∈ Const ∧ s2 ∈ Const ∧ s1 = s2

lmatches([t1, . . . , tn], [u1, . . . , un]) f(t1, ..., tn) = s1 ∧ f(u1, ..., un) = s2

false otherwise

(6.5)

• The first argument is a variable. Prior to testing if terms match, the tapply
function (discussed in Section 6.7.7.1) should be applied to sq. The differ-
ent handling of variables depending on context thus arises as a combin-
ation of tapply and tmatches. A variable with a previous bound value that
is used in an immutable context will already have been replaced with its
bound value (either a constant value or a function). As such, these are
never evaluated for matching with tmatches. Only variable instances that
are not replaced with bound values can be evaluated as s1. This only
includes variables used in a mutable context (which are free to match
against any value) or variables for which no previous bindings exist.

• Both terms are constants and are equal.

• Both terms are functions whose functors are equal and whose arguments
match as a list, using lmatches.

6.6.1.2 LMatches

This operates on lists of terms and indicates whether those lists match each
other. Again, the second argument contains grounded terms (i.e. its contents
are elements of ΓACRE) whereas the first argument may contain any ACRE
terms (i.e. its contents are elements of ΘACRE). The length of each list must be
equal for this to apply.

Arguments:

• [t1, . . . , tn] : 〈∀i : 1 ≤ i ≤ n : ti ∈ ΘACRE〉

• [u1, . . . , un] : 〈∀i : 1 ≤ i ≤ n : ui ∈ ΓACRE〉

141

lmatches([t1, . . . , tn], [u1, . . . , un]) ≡
true n = 0

lmatches([t1, . . . , tn−1], [u1, . . . , un−1]) n > 0

∧ tmatches(tapply(B, tn), un)

(6.6)

where B = lbind([t1, . . . , tn−1], [u1, . . . , un−1])

Empty lists are always considered to match (this relies on the notion of an
empty list outlined in Section 6.3.1). Where the lists are not empty, lmatches
acts as a recursive function. For lists of length n, it is first necessary to test
if the lists match up to position n − 1, recursively. If so, the nth terms are
compared, after applying the bindings arising from the earlier part of the lists.
The tapply function is defined below in Section 6.7.7.1. Its purpose is to apply
a set of bindings to a term.

6.6.1.3 PMatches

This tests to see if two predicates match. The first predicate may contain vari-
able terms, so any predicate of the ACRE language LACRE is permissible here.
Once again, the second argument must be grounded, and as such it must be
part of GACRE .

Arguments:

• s1 ∈ LACRE

• s2 ∈ GACRE

pmatches(s1, s2) ≡ p(t1, . . . , tn) = s1 ∧ p(u1, . . . , un) = s2

∧ lmatches([t1, . . . , tn], [u1, . . . , un])
(6.7)

Two predicates will match if they have the same predicate identifier (p) and
their arguments match as a list, using lmatches.

6.6.2 Triggers

The triggers predicate indicates whether a message will trigger a specific trans-
ition, given a set of bindings.

142

Arguments:

• m ∈Messages: a message

• t ∈ Transitions: a transition

• B ⊂ Bindings: the set of bindings already present in the conversation

triggers(m, t,B) ≡mp = tp

∧ tmatches(tapply(ts, B),ms)

∧ tmatches(tapply(tr, B
′),mr)

∧ pmatches(papply(tx, B
′′),mx)

(6.8)

where B′ = combine(B, tbind(tapply(ts, B),ms))

and B′′ = combine(B′, tbind(tapply(tr, B
′),mr))

A message will trigger a transition if all of the following criteria are met:

• The performative of the message (mp) and the transition (tp) are equal.

• The message’s sender (ms) matches the transition’s ‘sender’ field (ts).

• The message’s recipient (mr) matches the transition’s ‘recipient’ field (tr).

• The message’s content (mx) matches the transition’s ‘content’ field (tx).

In each of the above cases, with the exception of the performative (which can-
not be a variable), the conversation’s bindings are applied before matching,
so as to avoid re-binding variables that have already been bound. The func-
tions to apply these bindings are defined below in Section 6.7.7. The combine
function, for combining sets of bindings, is defined in Section 6.7.5.

6.6.3 Initiates

This predicate indicates whether a specific message is capable of initiating a
conversation to follow a specific protocol. A message is considered to be cap-
able of initiating a conversation if it matches a transition from the initial state
of the given protocol.

Arguments:

143

• m ∈Messages: a message

• p ∈ Protocols: a protocol

initiates(m, p) ≡ (mφ = pφ ∨mφ = ⊥) ∧ (∃t ∈ pT : pι = tσ ∧ triggers(m, t, ∅))
(6.9)

If the message has a defined protocol identifier (mφ), it may only be matched
against a protocol if this is the same as the protocol identifier of the protocol
itself (pφ). If this is the case, the message may initiate the protocol if the pro-
tocol contains a transition that begins at the protocol’s initial state (pι) and can
be triggered by the message. The ‘bindings’ argument to triggers is the empty
set in this case, as there are no bindings yet associated with the conversation
that is to be initiated.

6.6.4 Advances

Given a specific conversation, the advances predicate indicates whether a given
message is capable of advancing that conversation to a different state. This
involves checking the transitions of the underlying protocol to find one that is
active and can be triggered by the message.

Arguments:

• m ∈Messages: the message to be checked.

• c ∈ Conversations: a conversation against which the message is checked.

advances(m, c) ≡ (mc = ⊥∨mc = cc)∧ (∃t : t ∈ pT ∧ cs = tσ∧ triggers(m, t, cB))

(6.10)
where p ∈ P ∧ pφ = cφ

A message advances a conversation if a transition exists for which all of the
following criteria are met:

• If the message contains a conversation identifier (mc), it is the same as
that of the conversation (cc)

144

• The transition (t) is part of the protocol that the conversation is following.
This is indicated by the transition being contained within the protocol’s
set of transitions (pT). The protocol is identified as that whose protocol
identifier (pφ) matches that of the conversation (cφ).

• The conversation’s current state (cs) is the same as the transition’s start
state (tσ).

• The message triggers the transition, given the conversation’s current
bindings (cB).

6.7 Functions

In addition to the predicates defined above, a number of functions (that do not
evaluate to boolean values) must also be defined to facilitate ACRE’s conver-
sation management.

6.7.1 Head

The head function is a standard list operation that returns the first element of a
list. For an empty list, this will return the undefined value ⊥.

head(L) =

{
i1 n > 0

⊥ n = 0
(6.11)

where L = [i1, . . . , in]

6.7.2 Tail

The tail function is a standard list operation that returns all elements in a list
other than the first element. If the list already has fewer than two elements, an
empty list will be returned.

tail(L) =

{
[i2, . . . , in] n > 1

[] n ≤ 1
(6.12)

where L = [i1, . . . , in]

145

6.7.3 Append

The append function is used to append an element e to the end of a list L.

append(L, e) = [i1, . . . , in, e] (6.13)

where L = [i1, . . . , in]

6.7.4 New Conversation

The newConversation function is used to create a new conversation. As its ar-
guments, it takes a message that initiates a conversation (m) and the protocol
that the conversation should follow (p).

Arguments:

• m ∈Messages: a message used to initiate the conversation.

• p ∈ Protocols : initiates(m, p): a protocol for which m is capable of begin-
ning a conversation.

newConversation(m, p) = (pφ, {ms,mr}, pι, [], c, ∅, active) (6.14)

where:

c =

{
mc mc 6= ⊥
nextid() mc = ⊥

where nextid() is a function that generates a unique conversation identifier

This function returns a tuple representing a conversation. The protocol identi-
fier is the same as that of the protocol (pφ). The participants in the conversation
are the sender and recipient of the initial message (ms and mr respectively).
The conversation’s state is the initial state of the protocol (pι).

Initially, the message history relating to a conversation is an empty list, as the
conversation has yet to be advanced from its initial state (this occurs via the
advance function defined below).

For the conversation identifier, a function named nextid() is assumed. This will
create a unique identifier for a conversation in the event that a conversation
identifier is not specified already in the message initiating the conversation.
If the message does contain a conversation identifier (mc), this is used as the
identifier for the new conversation (c). c

146

A new conversation does not yet have any bindings associated with it, and is
in the active state.

6.7.5 Combine

The combine function is designed to merge two sets of bindings. The second
set of bindings takes precedence, in that if there are any variable/value pairs
in the two sets that share the same variable, it is the value from the second set
of bindings that is used in the combined result. Thus, this function can be con-
sidered to add the bindings of B′ to B, overriding any bindings for common
variables.

Arguments:

• B ∈ Bindings

• B′ ∈ Bindings

combine(B,B′) = {(v, c) ∈ B : (v, c′) /∈ B′} ∪B′ (6.15)

Support for overriding bindings is included because of the possibility of vari-
ables used in a mutable context. This is particularly important when a vari-
able used in mutable context already has a previous value bound to it. In this
situation, it is free to acquire a new binding that will override the previous
value. In practice, the combine function will be used with the older bindings
as the first argument and new bindings as the second, thus causing the older
binding to be overridden. Because of how the tapply function (discussed in
Section 6.7.7.1) is defined, a variable used in an immutable context will be re-
placed by its bound value before any matching occurs, which means that it
cannot cause a new binding to arise that will override a previous bound value.

6.7.6 Generating Bindings

The following sections define three functions for generating a set of bindings
after comparing two terms, predicates or lists. The tbind function applies to
terms, lbind applies to lists, pbind is for predicates.

147

6.7.6.1 TBind

The tbind function compares two terms (one of which is grounded) and returns
the bindings that arise.

Arguments:

• t ∈ ΘACRE

• g ∈ ΓACRE

tbind(t, g) =

(tv, g) t ∈ V arInst ∧ tv 6= ⊥
lbind([t1, . . . , tn], [u1, . . . , un]) tmatches(t, g)

∧ l = f(t1, . . . , tn)

∧ g = f(u1, . . . , un)

∅ otherwise

(6.16)

If the first argument t is a variable instance, a single binding of that variable
to the other argument g is returned. In practice, this will only arise where the
variable has either been used in a mutable context or where it has no value
previously bound to it. For a variable used in an immutable context that pre-
viously had a bound variable, it will have been replaced with that bound value
by means of the tapply function (discussed in Section 6.7.7.1) prior to this func-
tion being used. Thus it will not come to tbind as a variable and will instead be
handled by one of the other cases.

A special case is when the anonymous variable is used. This is modelled by
the variable name being undefined (i.e. tv = ⊥). As discussed in Section 5.5.2,
the anonymous variable does not acquire any bindings.

For functions, lbind is used to generate bindings between the functions’ re-
spective arguments (when converted to lists). Constant terms or terms that do
not match will not produce any bindings and are handled by the third case in
Equation 6.16.

6.7.6.2 LBind

The lbind function is intended to generate the bindings that arise when com-
paring two lists. In common with similar functions, the first argument is a list

148

of terms (elements of ΘACRE) whereas the second argument consists of groun-
ded terms (elements of ΓACRE).

Arguments:

• [t1, . . . , tn] : 〈∀i : 1 ≤ i ≤ n : ti ∈ ΘACRE〉

• [u1, . . . , un] : 〈∀i : 1 ≤ i ≤ n : ui ∈ ΓACRE〉

lbind([t1, . . . , tn], [u1, . . . , un]) =

{
∅ n = 0

combine(B, tbind(tapply(B, tn), un)) n > 0

(6.17)
where B = lbind([t1, . . . , tn−1], [u1, . . . , un−1])

No bindings are generated when two empty lists are compared. For non-
empty lists, the function acts recursively. It first calls lbind on the lists up to
element n − 1 (where n is the length of each list). These bindings are then ap-
plied to element n and combined with any bindings that arise from comparing
the terms at position n in the lists.

Notably, tapply is used to replace terms with their bound values prior to at-
tempting to generate new bindings. As discussed in Section 6.7.7.1, this will
replace any variables used in an immutable context with their previous bind-
ings, if these exist. Hence these are not capable of generating new bindings
when passed to tbind, as they have been replaced with functions or constant
values. A variable used in a mutable context (or that has no previous binding
associated with it) will not be replaced by tapply and as such is free to acquire
a new bound value.

It is important to note that this function does not check to see if the two lists
match. As such, undesirable results may arise if lmatches(t,g) is not evaluated
prior to attempting to make use of the bindings between them.

6.7.6.3 PBind

The pbind function generates a set of bindings from comparing two predicates.
As with similar functions, the second argument may only contain grounded
terms as its arguments.

Arguments:

• l ∈ LACRE

149

• g ∈ GACRE

pbind(l, g) =

lbind([t1, . . . , tn], [u1, . . . , un]) pmatches(l, g)

∧ l = p(t1, . . . , tn)

∧ g = p(u1, . . . , un)

∅ otherwise

(6.18)

Where the two predicates have the same predicate identifier (p) and the same
number of arguments, the bindings are generated by using the lbind function to
bind the argument lists. Where this is not the case, no bindings are generated.

6.7.7 Applying Bindings

Applying bindings to a term or predicate is the process of replacing variables
with the values to which they are bound. Two functions are defined for this
process: tapply for applying bindings to terms and papply to apply bindings to
predicates.

6.7.7.1 TApply

The tapply function is to apply a set of bindings to a single term (i.e. an ele-
ment of ΘACRE). The result is the same term, with any variable arguments
replaced by their associated value from the set of bindings, if one exists and if
the variable was used in an immutable context.

Arguments:

• t ∈ ΘACRE

• B ∈ Bindings

There are three possible outcomes when using the tapply function, each of
which is reflected in Equation 6.19.

1. If the term t is a function, the functor is left unchanged, while the tapply
function is applied to each of the function’s arguments.

2. The treatment of variable instances is key to the operation of mutable and
immutable variable contexts. Clearly, a variable cannot be replaced by a

150

bound value if none yet exists, thus it is a requirement that B contains
a binding that relates to the variable instance in question. When such
a binding exists, however, it is only used when the variable was used
in an immutable context. In this situation, the variable should only be
capable of matching the value against which it was previously bound, so
it is replaced by this value before any matching takes place. For a vari-
able used in a mutable context, it is not required to match its previous
value. This means that a mutable-context variable is not replaced with its
bound value, as it remains free to match against any value. This match-
ing is encapsulated by the complementary tmatches predicate discussed
in Section 6.6.1.1.

3. The final situation applies for anything other than the previous two cases.
This includes any variables used in mutable context, as discussed above.
It also includes variables used in an immutable context for which bind-
ings have not yet been created, in addition to constant values. In each of
these cases, no change is made and the term is returned unchanged.

tapply(t, B) =

f(u1, . . . , un) t = f(t1, . . . , tn)

v t ∈ V arInst ∧ tc = immutable ∧ ∃(tv, v) ∈ B
t otherwise

(6.19)
where 〈∀i : 1 ≤ i ≤ n : ui = tapply(ti, B)〉

6.7.7.2 PApply

This function applies a set of bindings to a predicate, replacing any variables
amongst its arguments with their associated values in the set of bindings, if
one exists.

Arguments:

• l ∈ LACRE

• B ∈ Bindings

papply(l, B) = p(u1, . . . , un) (6.20)

151

where p(t1, . . . , tn) = l

and 〈∀i : 1 ≤ i ≤ n : ui = tapply(ti, B)〉

The return value of this function is the same predicate, with tapply applied to
its arguments.

6.7.8 Advance

The advance function is used to advance the state of a specified conversation in
response to a given message. The protocol that the conversation is following
must also be provided as an argument.

Arguments:

• m ∈Messages

• c ∈ Conversations

• p ∈ Protocols

advance(m, c, p) = (cφ, cA, tε, append(cH ,m), cc, B
′′, ψ) (6.21)

where t ∈ pT ∧ tσ = cs ∧ triggers(m, t, cB)

and B = combine(cB, tbind(tapply(ts, cB),ms))

and B′ = combine(B, tbind(tapply(tr, B),mr))

and B′′ = combine(B′, pbind(papply(tx, B
′),mx))

and ψ =

{
completed tε ∈ pF
active otherwise

When advancing an existing conversation, the conversation’s existing protocol
identifier (cφ), participants (cA) and conversation identifier (cc) are unchanged.
Additionally, the conversation’s status will always be active after a successful
advancement, unless the conversation has come to an end. This occurs when
the new conversation state tε is a final state according to the underlying pro-
tocol (pF).

In order to ascertain the new current state of the conversation, a transition
must be identified that begins at the conversation’s current state (i.e. tσ = cs)
and is capable of being triggered by the message, given the conversation’s
current set of bindings (cB). The current state of the conversation after it is
advanced is the end state of the triggered transition (tε).

152

The bindings associated with the conversation after it has been advanced is a
result of comparing several aspects of the message against the transition that
is triggered. The bindings are generated in the following sequence:

1. The existing conversation bindings (cB) are applied to the ‘sender’ field
of the transition t. Any further bindings arising from comparing this to
the message sender are added to these bindings to be applied in the next
step.

2. The bindings from the above step are applied to the ‘recipient’ field of
the triggered transition before it is compared with the message recipient.
Again, any further bindings from this comparison are included for the
next stage.

3. Finally, the bindings accumulated thus far are applied to the ‘content’
field of the transition. This is then compared against the message content
in order to generate further bindings. All of these bindings are then part
of B′′, which becomes the current conversation bindings after it has been
advanced.

It is important to note that this function does not check if the conversation in
question is capable of being advanced by the given message. As such, it is
necessary to check that advances(m,c) holds true before applying this function.

6.8 Operational Semantics

This Section describes the operational semantics of the Conversation Manager
that forms part of each agent. Figure 6.1 shows the stages that the conver-
sation reasoning processes goes through on each iteration of the agent inter-
preter. The Conversation Manager begins each iteration in the Start state and
ends in the Done state, having iterated through all the messages then available.
The Conversation Manager does not itself begin its next iteration: this is left
to the agent itself, in accordance with the policy of the agent interpreter and
scheduler.

In the following sections, the Conversation Manager is represented by the
tuple (n,M,C, P,E, s, µ), as described in Section 6.5.9. For the purposes of
these formal semantics, it is assumed that the Conversation Manager has sep-
arately been made aware of the name of the agent to which it belongs (n) and

153

Figure 6.1: Stages in the conversation reasoning process.

the set of Protocols of which the agent is aware (P). Additionally, as the agent
perceives incoming messages and decides to send outgoing messages, these
are added to the message queue (M).

6.8.1 Start

The Start state is the initial state in the process and is shown in Equation 6.22.
The principal function of this state is to prepare the Conversation Manager for
the reasoning process it must undertake. This is done by initially emptying
the event set E so that by the end of the process, all events in the set have been
triggered on this iteration of the agent interpreter cycle.

It is assumed that any events remaining in the event set from the previous
interpreter cycle can be safely discarded, as they will have been read by an
external entity following that iteration.

true

(n,M,C, P,E, start, µ) −→ (n,M,C, P,E ′, initialise, µ)
(6.22)

where E ′ = ∅

At this stage, emptying this set is the only work to be done. No processing of a
message has yet occurred, meaning that no changes to the active conversations
or other elements has taken place at this stage. The Conversation Manager
may now enter the next state: initialise.

154

6.8.2 Initialise

The initialise state, shown in Equation 6.23, is where a message is removed from
the message queue so that it can be processed by the Conversation Manager.
In the case where there is at least one message in the message queue (M), this
is removed and moved into the memory of the Conversation Manager (µ).
In this situation, some further processing will be required in order to match
this message to an appropriate conversation (or to create an appropriate new
conversation). Thus the state of the Conversation Manager changes to match
in this situation.

head(M) 6= ⊥
(n,M,C, P,E, initialise, µ) −→ (n,M ′, C, P,E,match, µ′)

(6.23)

where M ′ = tail(M)

and µ′ = (head(M), ∅)

If there are no messages in the message queue, the Conversation Manager has
no further processing to do on this iteration of the agent, so its state changes
to done. This situation may occur either because no messages were sent or
received since the last iteration of the agent, or because the Conversation Man-
ager has already processed all the messages that were in the queue. In the
latter situation, it will have entered this initialise state via the update state.

head(M) = ⊥
(n,M,C, P,E, initialise, µ) −→ (n,M,C, P,E, done, µ′)

(6.24)

where µ′ = (⊥, ∅)

6.8.3 Match

The match state is designed to attempt to match the message that was pre-
viously stored in memory against the conversations that are already active
(stored in C). Any conversations that can be advanced by the message in
question are considered to be candidate conversations and are stored in the
memory of the Conversation Manager (µC). Further reasoning will take place
later in the update state (discussed in Section 6.8.6) to ensure that the message
is matched against the correct conversation.

true

(n,M,C, P,E,match, µ) −→ (n,M,C, P,E, fail, µ′)
(6.25)

155

where µ′ = (µm, {c ∈ C : advances(µm, c)})

Once this stage is complete, the Conversation Manager enters the fail state.

6.8.4 Fail

The fail state checks for failed conversations. A conversation is considered to
have failed if its conversation identifier is specified in the message, but the
message cannot advance that conversation because it does not match against
any active transition. Either one of two situations may occur in this state.

In the first situation, an active conversation c exists (in the set of active conver-
sations C) that can be considered to have failed, as the message m is incapable
of advancing it, despite specifying its conversation identifier (i.e. mc = cc).
When this occurs, the status of the conversation must be changed to failed. An
event to indicate the failure of conversation c is added to the event set (E) so
that the agent will become aware of the failure of the conversation. The Con-
versation Manager moves to be new state.

∃c ∈ C : mc = cc ∧ ¬advances(m, c)
(n,M,C, P,E, fail, µ) −→ (n,M,C ′, P, E ′, new, µ)

(6.26)

where m = µm

and C ′ = (C \ {c}) ∪ {c′}
and c′ = (cφ, cA, cs, cH , cc, cB, failed)

and E ′ = E ∪ {(failed, c)}

The second situation arises where no failed conversations are identified. This
will occur for one of two reasons:

1. The message does not specify any conversation identifier (i.e. mc = ⊥).
A message can only cause a conversation to fail if it explicitly references
its conversation identifier.

2. Each active conversation (in C) either has a different conversation iden-
tifier to that of the message, or is capable of being advanced by the mes-
sage. In the latter case, this can only happen when the conversation iden-
tifiers of the conversation and the message are equal.

In this situation, the Conversation Manager’s state changes to new, with no
other changes being made. In the case where a conversation is identified by the

156

identifier contained in the message and can be advanced by it, that conversa-
tion will previously have been added to the conversation manager’s memory
as a candidate for advancement during the match state. Thus no action with
this conversation is necessary at this stage.

mc = ⊥ ∨ (∀c ∈ C : mc 6= cc ∨ advances(m, c))
(n,M,C, P,E, fail, µ) −→ (n,M,C, P,E, new, µ)

(6.27)

where m = µm

6.8.5 New

In the new state, the Conversation Manager checks for new conversations that
could be started by the message being processed. Because conversation identi-
fiers must be unique, this does not happen if the message contained a conver-
sation identifier that uniquely identifies a conversation that is already active.
For the purposes of creating new conversations, it is not important whether
or not the message is capable of advancing its matching active conversation.
The fact that the identifiers match is considered to be a clear indication that
the intent of the message is to advance that message. If it cannot do so, that
conversation will have been considered to have failed during the fail state. In
either case, the message will not be used to create a new conversation and
no change is made to the Conversation Manager other than to move it to the
update state.

A message will only generate a new conversation if it is capable of initiating a
conversation that follows a known protocol. Moving the Conversation Man-
ager to the update state is also the only change required if there is no protocol
that the message is capable of initiating.

Equation 6.28 applies to both of the above situations, where either the message
has a conversation identifier that matches an active conversation or where it
cannot initiate a conversation that follows any known protocol. The only al-
teration is the change of state in the Conversation Manager.

(∃c ∈ C : mc = cc) ∨ (¬∃p ∈ P : initiates(µm, p))

(n,M,C, P,E, new, µ) −→ (n,M,C, P,E, update, µ)
(6.28)

Two conditions must be satisfied in order for a message to be capable of begin-
ning a new conversation. Firstly, it must not contain a conversation identifier
that matches an active conversation, as discussed above. This condition also

157

takes into account the situation where the message does not contain any con-
versation identifier, as all active conversations must contain a unique identifier
meaning that no match can occur. Secondly, the message must be capable of
initiating a conversation that follows some known protocol (in P).

When a new conversation is to be initialised, it is created (using the newConver-
sation function) and added to the Conversation Manager’s memory (µ). At this
stage, the new conversation is not added to the set of active conversations (C),
as further reasoning is required before the Conversation Manager can activate
the conversation. This is done in the update state, to which the Conversation
Manager now moves.

(¬∃c ∈ C : mc = cc) ∧ (∃p ∈ P : initiates(µm, p))

(n,M,C, P,E, new, µ) −→ (n,M,C, P,E, update, µ′)
(6.29)

where µ′ = (µm, µC ∪ {c′})
and c′ = newConversation(µm, p)

The reason why the new conversation is not yet activated is because of the
possibility of messages not specifying a conversation identifier. When this oc-
curs, a message may previously have been matched against one or more active
conversations during the match state discussed in Section 6.8.3. However, if
this message is also capable of initiating a new conversation, it is unclear what
the intent of the message is and so it will be considered to be an ambiguous
message during the update state discussed in Section 6.8.6.

6.8.6 Update

When in the update state, the active conversations must be updated to reflect
any changes that may have occurred as a result of sending or receiving this
message.

In this state, one of three situations may have occurred, depending on how
many conversations could be matched against the message. In each situation,
appropriate events must be added to the event set E so that the agent to which
the Conversation Manager is attached can gain knowledge about the status of
its communication. The types of event that can be raised are the same as those
previously discussed in Section 5.6.3.

The first case is where the message was matched to exactly one conversation.
Here, the existing conversation (c) is first removed from the list of active con-

158

versations (C). If this is a new conversation that is not already in C, this will
have no effect. Once the conversation has been advanced (creating c′), it is
added back to C .

Three events are available in this scenario: an ‘advanced’ event will always
be raised when a conversation is successfully advanced, a ‘completed’ event
indicates that the conversation was advanced to a final state and a ‘started’
event arises when the conversation was previously in its initial state (i.e. this
is the first time it has been advanced).

Multiple events may be raised, depending on the state of the conversation.
For any protocol, a ‘started’ or ‘completed’ event will be accompanied by an
‘advanced’ event. All three may arise for the the simplest protocol consisting
of only two states and one transition. Here, the conversation may be begun,
advanced and finished by the same message.

|µC | = 1

(n,M,C, P,E, update, µ) −→ (n,M,C ′, P, E ′, initialise, µ)
(6.30)

where E ′ = E ∪ E ′′

and (completed, c′) ∈ E ′′ ⇐ c′s ∈ pF
and (advanced, c′) ∈ E ′′

and (started, c′) ∈ E ′′ ⇐ cs = pι

and p ∈ P : pφ = cφ

and c ∈ µC
and C ′ = (C \ {c}) ∪ {c′}
and c′ = advance(µm, c, p)

In the second case, the message has been matched with multiple candidate
conversations. This situation can only occur where the message does not con-
tain a conversation identifier, as conversation identifiers must be unique. Be-
cause it is impossible to be certain as to which conversation the message was
intended to relate to, or whether it was instead intended to begin a new con-
versation, no alteration is made to any active conversation and an ‘ambiguous’
event is raised to indicate that this situation has occurred.

|µC | > 1

(n,M,C, P,E, update, µ) −→ (n,M,C, P,E ′, initialise, µ)
(6.31)

where E ′ = E ∪ {(ambiguous, µm)}

The final situation to be handled is where no conversation was found that

159

could advanced by the message in question and where the message was also
incapable of initiating a new conversation that followed a known protocol. In
this case, an ‘unmatched’ event is raised to inform the agent of this. Unlike
an ambiguous message, a message that does contain a specific conversation
identifier may still be unmatched, either because of a previous problem with
that conversation, or because the details of the message itself do not correctly
match the specified protocol definition.

|µC | = 0

(n,M,C, P,E, update, µ) −→ (n,M,C, P,E ′, initialise, µ)
(6.32)

where E ′ = E ∪ {(unmatched, µm)}

6.8.7 Done

The done state indicates the end of the reasoning process. At this point, the
Conversation Manager will perform no further tasks until the agent resets it to
the start state on its next iteration.

6.9 Example

This section presents a slightly modified version of the Process Documents
protocol originally presented the example in Section 5.8.3. Similar messages
are used as in that example, with the formal semantics being used to show
how the conversation is modelled by ACRE.

This example uses a sample conversation between two agents (named agent1
and agent2), of which one supports conversation management and the other
does not. The lack of support for conversation management means that agent2
sends messages that do not contain conversation-id or protocol para-
meters.

The protocol used is illustrated in Figure 6.2.

6.9.1 Modelling

Firstly, the protocol is given a unique identifier so that it can be referred to by
the various elements within the conversation. In this case, we use proc docs

as the unique protocol identifier.

160

Figure 6.2: Process Documents Protocol.

The proc docs protocol consists of five states, which are stored in a set named
S. These are defined as the following 2-tuples, in accordance with the defini-
tion of a state found in Section 6.5.4.

S = {(start, proc docs), (waiting, proc docs), (requested, proc docs),
(end, proc docs), (failed, proc docs)}

Having modelled the protocol’s states, the transitions must now be modelled

161

according to the definition set out in Section 6.5.5. The set of states to be used
in the protocol is named T and is defined as follows:

T = {
(proc docs, start, waiting, (?initiator, immutable),

(?respondent, immutable), inform, ready),

(proc docs, waiting, requested, (?respondent, immutable),

(?initiator, immutable), request, process((?docid,mutable))),

(proc docs, requested, waiting, (?initiator, immutable),

(?respondent, immutable), inform, processed((?docid, immutable))),

(proc docs, requested, end, (?respondent, immutable),

(?initiator, immutable), refuse, process((?docid, immutable))),

(proc docs, requested, failed, (?respondent, immutable),

(?initiator, immutable), failure, process((?docid, immutable)))

}

The next stage is to model the protocol itself (p). This is done following the
model set out in Section 6.5.6.

p = (proc docs, S, T, start, {end, failed})

where S and T are the previously-defined sets of states and transitions respect-
ively. This protocol’s initial state is named start, and ends if either the end or
failed state is reached.

Finally, the conversation manager must be modelled, according to Sec-
tion 6.5.9. Initially, this is as follows:

(agent1, [], ∅, {p}, ∅, start, (⊥, ∅))

In this example, it is assumed that the name of the parent agent is agent1 and
that p is the only protocol of which the agent is aware. Initially, the conversa-
tion manager has no messages in its queue, has processed no conversations,
has raised no events and has not loaded anything into its memory. As such, all
of these begin as empty sets, empty lists or undefined values.

6.9.2 Start

The start state involves only the emptying of the conversation manager’s event
queue. On the first iteration, this is already empty and so it remains:

(agent1, [], ∅, {p}, ∅, start, (⊥, ∅))

162

6.9.3 First Iteration

6.9.3.1 Initialise

The initialise state takes the first message in the message queue and adds it to
memory (if such a message exists). The message queue is initially assumed to
contain the following message (the conversation-id and protocol fields
have been added for the purposes of illustrating the formal model):

(inform

:sender agent1

:receiver agent2

:content ready

:conversation-id c1

:protocol proc_docs

)

For convenience, this message is referred to as m1 and is represented in the
formal model according to the definition in Section 6.5.3 as follows:

m1 = (agent1, agent2, c1, proc docs, inform, ready)

In the initialise state, this message is removed from the message queue and
loaded into the conversation manager’s memory and the state is changed to
match. Thus the state of the conversation manager becomes:

(agent1, [], ∅, {p}, ∅,match, (m1, ∅))

6.9.3.2 Match and Fail

The match and fail states both depend on the set of active conversations being
non-empty. As this is not the case, the only effect these will have on this itera-
tion is to change the state of the conversation manager. Thus at the end of the
fail state, the conversation manager is represented as follows:

(agent1, [], ∅, {p}, ∅, fail, (m1, ∅))

6.9.3.3 New

The new state is the phase where the conversation manager attempts to begin
new conversations that are based on known protocols. It checks the message

163

stored in memory against each known protocol in turn and checks each to
see if the message is capable of initiating a new conversation that follows the
protocol in question.

In this example, p is the only protocol of which the conversation manager has
knowledge, so a new conversation will be created if initiates(m1, p) evaluates
to true.

One aspect of the initiates predicate is to check that the protocol identifiers in
the message and the protocol are equal (or that the message does not specify
a particular protocol). In this case, both m1 and p have a protocol identifier of
proc docs.

Additionally, it compares the message with all transitions that begin in the pro-
tocol’s initial state. In this case, the only transition that satisfies this criterion
is:

t = (proc docs, start, waiting, (?initiator, immutable),

(?respondent, immutable), inform, ready)

This must be compared with the message using the triggers predicate. As
this would be a new conversation, no bindings are yet in effect. Thus,
triggers(m1, t, ∅) predicate in this situation evaluates to true, as follows:

• The performative in the message is the same as the performative in the
transition.

• The message sender is specified in the transition as a variable, which
matches anything using the tmatches predicate.

• Similarly, the transition’s specification of the message receiver is also a
variable, which also results in a match.

• Finally, the contents match, as they are the same predicate without any
parameters.

This is illustrated in Table 6.1. In this table, “Pre” shows an element of
the transition definition before any bindings are applied to it. “Post” refers
to the same elements after applying bindings. “Message” is the same field
as it appears in the message. “Match” indicates whether or not the post-
bindings transition element matches the corresponding message element. Fi-
nally “New” shows any new bindings that arise from matching these.

164

Table 6.1: Initial message matched against available transition in the new state.
Transition

t = (proc docs, start, waiting, (?initiator, immutable),
(?respondent, immutable), inform, ready)

Pre Post Message Match New
inform inform inform Yes
?initiator ?initiator agent1 Yes ?initiator→ agent1
?respondent ?respondent agent2 Yes ?respondent→ agent2
ready ready ready Yes

As the message is capable of beginning a conversation that follows the
proc docs protocol, a new conversation is created and added to the conversa-
tion manager’s memory. This conversation takes the following form, and is
referred to as c for convenience:

c = (proc docs, {agent1, agent2}, start, [], c1, ∅, active)

This conversation has the same protocol identifier as the protocol, has agents
agent1 and agent2 as its participants, is initially in the protocol’s start state, has
had no messages yet associated with it, can be identified by the conversation
identifier c1 (taken from the message), has no initial bindings and is itself in an
active state.

Having created this new conversation, the conversation manager can progress
to the update state. At this point, it is modelled as follows:

(agent1, [], ∅, {p}, ∅, update, (m1, {c}))

6.9.3.4 Update

The update state examines any candidate conversations that have been iden-
tified during the previous states and advances a conversation if the message
has been matched against one. In this case, only one candidate conversation
is present in the conversation manager’s memory, and so no event is raised to
notify of either an ambiguous or unmatched message. The conversation c is
advanced using the advance function specified in Section 6.7.8.

The mechanism of the advance function is similar to the triggers predicate in
terms of how the bindings are created, and so the procedure shown in Table 6.1
is also relevant to this step. This creates a new representation of a conversation
as it appears following the sending of the first message. This conversation is
as follows:

165

c′ = (proc docs, {agent1, agent2}, waiting, [m1], c1, B, active)

where B = {(?initiator, agent1), (?respondent, agent2)}

Following this process, the conversation manager is now:

(agent1, [], {c′}, {p}, {(started, c′), (advanced, c′)}, done, (m1, c))

6.9.4 Second Iteration

On the second iteration of the agent, the Conversation Manager is again placed
in the initialise state. On this iteration, it is assumed that a reply has been
received, as follows:

(request

:sender agent2

:receiver agent1

:content process(doc123)

)

This message has been sent by an agent that does not support conversation
management and as such it lacks the conversation-id and protocol

parameters. It is left to the Conversation Manager to match this message
against the available protocols and active conversations.

6.9.4.1 Start and Initialise

As with the first iteration, the start and initialise states are concerned with ini-
tially emptying the Conversation Manager’ event queue, and then loading the
first message from the message list into its memory. In this iteration, the in-
coming message is modelled as m2, which is defined as follows:

m2 = (agent2, agent1,⊥,⊥, request, process(doc123))

In this instance, the elements representing the conversation and protocol iden-
tifiers contain undefined values (⊥). After the initialise state, the Conversation
Manager may be modelled as follows:

(agent1, [], {c}, {p}, ∅,match, (m2, ∅))

166

6.9.4.2 Match

In the match state, the conversation manager examines the stored message and
attempts to match it against existing active conversations. The conversation
manager now contains one active conversation, against which the message
must be compared. The set of candidate conversations in memory will include
any conversation c for which advances(m2, c) evaluates to true.

The advances predicate compares the message against any of the protocol’s
transitions that begin at the current state of the conversation. In this case, there
is only one transition that satisfies this criterion, namely:

t = (proc docs, waiting, requested, (?respondent, immutable),

(?initiator, immutable), request, process((?docid,mutable)))

This transition is compared to the message using the triggers predicate, in the
same way as in the first iteration. However, on this occasion, there are already
bindings associated with the conversation. The process of matching the trans-
ition against the message is set out in Table 6.2.

Table 6.2: Second message matched against available transition in the match
state.

Transition
t = (proc docs, waiting, requested, (?respondent, immutable),
(?initiator, immutable), request, process((?docid,mutable)))

Pre Post Message Match New
request request request Yes
?respondent agent2 agent2 Yes
?initiator agent1 agent1 Yes
process(??docid) process(??docid) process(doc123) Yes ?docid

→ doc123

Following the first iteration, bindings had been created for the ?initiator
and ?respondent variables, and so these are replaced with their bound val-
ues before a comparison is made to the message. Thus for this conversation,
?initiator must always match against agent1 (as it is always used in an
immutable context) and ?respondent may only match against agent2.

Since the transition can be triggered by the message, this conversation can be
considered to be a candidate for advancement, and so is added to the Conver-
sation Manager’s memory as such. This results in the Conversation Manager
at the end of the match state being modelled as follows:

(agent1, [], {c}, {p}, ∅, fail, (m2, {c}))

167

6.9.4.3 Fail

In the fail state, messages that include conversation-id parameters are checked
against any existing conversation with the same identifier and mark the con-
versation as having failed if the message is not capable of advancing it. Al-
though the set of active conversations is now non-empty, the message being
processed does not contain a conversation-id parameter, and so the fail
state will have no effect other than to transition the conversation manager to
the next, new, state.

6.9.4.4 New

As the message does not contain a conversation identifier, the new state will
cause each protocol to be checked to see if the message is capable of initiating
a conversation that follows that protocol. As there is only one loaded protocol,
this procedure is identical to that in the first iteration. The process of matching
m2 to the transition is set out in Table 6.3. However, on this occasion, the
performative required by the transition does not match the performative in
the message, and so this protocol is not a candidate match for this message.

Table 6.3: Second message matched against available transition in the new
state.

Transition
t = (proc docs, start, waiting, (?initiator, immutable),

(?respondent, immutable), inform, ready)
Pre Post Message Match New
inform inform request No

6.9.4.5 Update

In the update state, there is once again only one conversation that matched the
message. This conversation will be advanced, and appropriate events gener-
ated.

The message m2 is added to the message history and the bindings are updated
to reflect the fact that the ?docid variable has gained a bound value.

c′ = (proc docs, {agent1, agent2}, requested, [m1,m2], c1, B
′, active)

where B′ = {(?initiator, agent1), (?respondent, agent2), (?docid, doc123)}

168

Following this process, the conversation manager is now modelled as follows:

(agent1, [], {c′}, {p}, {(advanced, c′)}, done, (m2, c))

On this occasion, the conversation has neither started nor ended, so the only
event raised is that the conversation was advanced.

6.9.5 Third Iteration

On the third iteration of the Conversation Manager, a further message has been
sent, as follows:

(inform

:sender agent1

:receiver agent2

:content processed(doc123)

:conversation-id c1

:protocol proc_docs

)

This message is modelled as before and is named m3, as follows:

m3 = (agent1, agent2, c1, proc docs, inform, processed(doc123))

6.9.5.1 Start, Initialise and Match

The start and initialise stages occur in an identical fashion to the second itera-
tion. During the match state, the message is compared against each of the three
available transitions in the active conversation. This matching is presented in
Table 6.4.

The message m3 is only capable of triggering one of the available transitions
in the active conversation. As such, the conversation can be added to the set
of candidate conversations, as follows:

(agent1, [], {c}, {p}, ∅, fail, (m3, {c}))

6.9.5.2 Fail

The third iteration is the first in which the conditions necessary for the fail state
to be relevant are present. This occurs whenever the message being processed

169

Table 6.4: Third message matched against available transition in the match
state.

Transition
t = (proc docs, requested, waiting, (?initiator, immutable),

(?respondent, immutable), inform, processed((?docid, immutable)))
Pre Post Message Match New
inform inform inform Yes
?initiator agent1 agent1 Yes
?respondent agent2 agent2 Yes
processed(?docid) processed(doc123) processed(doc123) Yes

Transition
t = (proc docs, requested, end, (?respondent, immutable),

(?initiator, immutable), refuse, process((?docid, immutable)))
Pre-bindings Post-bindings Message Match New
refuse refuse inform No

Transition
t = (proc docs, requested, failed, (?respondent, immutable),

(?initiator, immutable), failure, process((?docid, immutable)))
Pre-bindings Post-bindings Message Match New
failure failure inform No

includes a conversation identifier (as is the case with m3), but the conversation
that this refers to cannot be advanced by the message.

In this case, message m3 is capable of advancing conversation c (as illustrated
in Table 6.4) and so the conversation is not marked as having failed.

This means that the conversation manager can enter the new state and be mod-
elled as follows:

(agent1, [], {c}, {p}, ∅, new, (m3, {c}))

6.9.5.3 New

In the new state, one of the conditions in which no new conversation will
be initiated is if the message contains a conversation identifier and the cor-
responding candidate conversation has already been identified (according to
Equation 6.28). In this instance, m3 does contain a conversation identifier and
it has already been established that conversation c is a candidate conversation,
meaning that no check is performed to establish whether a new conversation
may be initiated.

170

Thus, the conversation manager can move to the update state, at which point it
is modelled as:

(agent1, [], {c}, {p}, ∅, update, (m3, {c}))

6.9.5.4 Update

The update state on this iteration is similar to that in the second iteration. Once
again, there is only one conversation that matched the message.

Message m3 is added to the message history, although on this occasion, no
additional bindings were generated by the matching shown in Table 6.4 so
these are unchanged.

The conversation can now be advanced to the waiting state, and is modelled
as follows: c′ = (proc docs, {agent1, agent2}, waiting, [m1,m,m3], c1, B, active)

where B = {(?initiator, agent1), (?respondent, agent2), (?docid, doc123)}

Following this process, the conversation manager is now modelled as follows:

(agent1, [], {c′}, {p}, {(advanced, c′)}, done, (m3, c))

6.9.6 Fourth Iteration

On the fourth iteration of the agent, it is assumed that a further message has
been exchanged, taking the following form:

(request

:sender agent2

:receiver agent1

:content process(doc234)

)

Following previous iterations, this message is named m4 and is modelled as
follows:

m4 = (agent2, agent1,⊥,⊥, request, process(234))

Once again, it can be seen that messages sent by agent2 lack the protocol
and conversation-id fields as that agent does not support conversation
management.

171

6.9.6.1 Start, Initialise and Match

The start and initialise states are carried out in the same way as the previous
iteration.

In the match state, the message is compared with the one active conversation.
As that conversation is in the waiting state, there is only one available transition
against which to match the message. The matching of the message against this
transition is outlined in Table 6.5.

Table 6.5: Fourth message matched against available transition in the match
state.

Transition
t = (proc docs, waiting, requested, (?respondent, immutable),
(?initiator, immutable), request, process((?docid,mutable)))

Pre Post Message Match New
request request request Yes
?respondent agent2 agent2 Yes
?initiator agent1 agent1 Yes
process(??docid) process(??docid) process(doc234) Yes ?docid

→ doc234

One key difference between this match and that done for message m2 is in
the content field. Although the ?docid variable already has a binding in the
active conversation, it is used in a mutable context in this transition.

According to Equation 6.19, since the variable is used in a mutable context,
applying bindings to it does not replace it with a bound value. As such, it is
free to acquire a new bound value (i.e. “doc234”) when it is matched against a
new term.

As the message matches an available conversation, conversation c is added to
the set of candidate conversations, leaving the conversation manager in the
following situation entering the fail state:

(agent1, [], {c}, {p}, ∅, fail, (m4, {c}))

6.9.6.2 Fail, New and Update

As the message did not contain a conversation identifier, the fail state will have
no effect on any active conversation, in the same way as in the second iteration.

However, an attempt must be made to check if any new conversation could be
initiated by this message, so in the new state, the message is compared against

172

the initial transitions of known protocols. In this example, only one protocol is
known, and so the message must be matched only against that protocol. This
is illustrated in Table 6.6.

Table 6.6: Fourth message matched against available transition in the new state.

Transition
t = (proc docs, start, waiting, (?initiator, immutable),

(?respondent, immutable), inform, ready)
Pre Post Message Match New
inform inform refuse No

As with the message sent in the second iteration, message m4 is also incap-
able of starting a new conversation and so no change is made to the candidate
conversations.

Thus the only further change to the conversation manager on this iteration is
in the update state, where the only candidate conversation that was identified
is actually advanced.

Because of the use of the mutable variable in the transition that was triggered,
the bindings associated with the conversation are altered by the update in this
case.

The conversation returns to the “requested” state, and is modelled as follows:
c′ = (proc docs, {agent1, agent2}, requested, [m1,m,m3,m4], c1, B, active)

where B = {(?initiator, agent1), (?respondent, agent2), (?docid, doc234)}

The conversation manager is also changed to reflect this change, along with
the event that the conversation has been advanced.

(agent1, [], {c′}, {p}, {(advanced, c′)}, done, (m4, c))

6.9.7 Fifth Iteration

The final iteration of this conversation consists of the initiator agent refusing to
process the requested document, thus terminating the conversation by bring-
ing it to a terminal state. The message associated with this action is:

173

(refuse

:sender agent1

:receiver agent2

:content process(doc234)

:conversation-id c1

:protocol proc_docs

)

As before, this message is modelled as a tuple called m5 as follows:

m5 = (agent1, agent2, c1, proc docs, refuse, process(234))

6.9.7.1 Start, Initialise and Match

The functioning of the start and initialise states is the same as for previous iter-
ations.

In terms of matching this message against available conversations, it is similar
to the process conducted on the third iteration, where the available conversa-
tion was also in the “requested” state.

In this state, there are three available transitions against which the message
should be compared. This process is shown in Table 6.7.

On this occasion, one transition can be triggered by the message. This trans-
ition is the second that is compared, where the state of the conversation would
be brought to the “end” state, which is a terminating state.

As the message is capable of advancing an active conversation c, this conver-
sation is added to the set of candidates, leaving the conversation manager as
follows:

(agent1, [], {c}, {p}, ∅, fail, (m5, {c}))

6.9.7.2 Fail, New and Update

As with the previous iterations, the fail and new states do not have any effect on
the conversation manager (as the message is capable of successfully advancing
the conversation it identified).

In the update state, the conversation is once again advanced using the message
m5. No new bindings were generated by the triggering of the active transition,

174

Table 6.7: Fifth message matched against available transition in the match state.

Transition
t = (proc docs, requested, waiting, (?initiator, immutable),

(?respondent, immutable), inform, processed((?docid, immutable)))

Pre Post Message Match New
inform inform refuse No

Transition
t = (proc docs, requested, end, (?respondent, immutable),

(?initiator, immutable), refuse, process((?docid, immutable)))
Pre Post Message Match New
refuse refuse refuse Yes
?respondent agent2 agent2 Yes
?initiator agent1 agent1 Yes
process(?docid) process(doc234) process(doc234) Yes

Transition
t = (proc docs, requested, failed, (?respondent, immutable),

(?initiator, immutable), failure, process((?docid, immutable)))
Pre Post Message Match New
failure failure refuse No

so the bindings remain as they were after the previous iteration. The conver-
sation can now be modelled as:

c′ = (proc docs, {agent1, agent2}, end, [m1,m,m3,m4,m5], c1, B, completed)

where B = {(?initiator, agent1), (?respondent, agent2), (?docid, doc234)}

It is notable here that since the “end” state is a terminating state, the conversa-
tion status now becomes completed.

Having advanced the conversation, the conversation manager is now as fol-
lows:

(agent1, [], {c′}, {p}, {(advanced, c′), (completed, c′)}, done, (m5, c))

At this point, the conversation has now been completed, as it has reached a
state that has no outgoing transitions.

175

6.10 Summary

This Chapter outlines the formal model underpinning the ACRE system, in-
cluding the operational semantics for the conversation manager, which is the
most crucial component of the system.

The formal model includes modelling of conversations, protocols, messages
and the other associated entities that are necessary for such a system. In addi-
tion to this, a number of other predicates and functions are necessary in order
to be able to reason about and manipulate the entities that have been modelled.

An example is also presented where the operational semantics are used on a
sample conversation, indicating the transitions that occur at each state.

Chapter 7 follows this work in providing a generic architecture to demonstrate
how the ACRE system may be integrated into a Multi Agent platform. A con-
crete implementation that integrates with a specific Agent Oriented Program-
ming framework then follows in Chapter 8.

176

CHAPTER

SEVEN

Generic Architecture

7.1 Introduction

The preceding Chapters have shown how the Agent Conversation Reasoning
Engine (ACRE) models agent conversations, leading to the formal model of
agent conversation presented in Chapter 6. Following from this work, it is
necessary to show how ACRE may be used in a practical sense, within a Multi
Agent System (MAS) framework.

This Chapter presents the generic ACRE architecture, which refers to an ab-
stract architecture that is designed to fit into a variety of MAS frameworks.
More concrete details of a specific implementation are given in Chapter 8.

The generic architecture consists of a number of components that provide the
core services of ACRE, combined with existing elements of the MAS frame-
work with which these must be integrated. The ACRE components are de-
signed to be, to the greatest extent possible, independent of platform, frame-
work and AOP language. The generic architecture aims to keep the amount of
framework-specific integration to a minimum, with only one ACRE compon-
ent interacting directly with the MAS framework and its agents.

In order to be compatible with ACRE, a MAS framework is required to provide
a number of pre-existing features, such as message sending capabilities. This
Chapter focuses on these existing components that the framework is expected
to have, along with describing the ACRE components and the role they play
within the overall system.

177

Figure 7.1: Generic ACRE Architecture.

7.2 Overview

The Generic Architecture is shown in Figure 7.1. In this diagram, components
with thicker borders indicate those that are part of ACRE, whereas those with

178

thin borders are required as pre-existing components of the framework within
which the agents reside. Arrows between components indicate the flow of
data through the overall system. Each of the components is outlined in detail
in the following sections, along with details of how they should be integrated
into an existing MAS system.

The system’s components are separated into groups based on whether they
operate externally, at the platform level or the individual agent level. Those
that are grouped in the platform level are shared between agents, and only one
of each of these components is present within one agent platform at any point
in time. Components at the agent level belong only to a single agent, and each
ACRE-enabled agent in the system should have its own instances of these.

The following sections outline the components in the architecture that are part
of ACRE, along with the data that flows between them. The architecture is de-
signed so that the ACRE/Agent Interface is the only component that interacts
directly with the existing components of the agent platform on which ACRE is
running. As such, this is the only component for which a framework-specific
version needs to be created in order to integrate with a new MAS framework.
Java implementations of all other components have been created, as Java is a
popular language in the creation of MAS frameworks. Thus, these are capable
of being deployed in their present form within any Java-based MAS frame-
work (e.g. Agent Factory [36], Jason [19]). Where relevant, details of how
these should be integrated into a MAS framework are supplied.

7.3 External Components

This Section discusses aspects of ACRE that are entirely independent of any
framework within which ACRE is used. These are accessed remotely using
standard networking protocols (such as HTTP) and so no work is required to
tailor them to specific frameworks.

7.3.1 External Protocol Repositories

A Protocol Repository is a resource from which protocol definitions can be
sourced. Access to a Protocol Repository can currently be gained either via
HTTP or by reading from a local filesystem, although the structure of repos-
itories does not preclude the implementation of access mechanisms that use

179

other protocols such as SSH or FTP.

Each Protocol Repository is identified by a URL that identifies its base direct-
ory. Within that base directory, it is necessary to have a repository.xml

file that describes the contents of the repository, and a repository directory
that holds the individual protocol definitions. This layout is loosely based on
the package repositories that are used by the Advanced Packing Tool (APT) to
install programs on the Debian Linux Operating System1 and its derivatives.

A sample of a valid repository.xml file is shown in Figure 7.2. This file
follows the XML schema document (XSD) for repository.xml files shown
in Appendix B.

<?xml version="1.0" encoding="UTF-8"?>
<repository xmlns="http://acre.lill.is"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://acre.lill.is
http://acre.lill.is/repository.xsd">
<base>http://acre.lill.is</base>
<namespaces>

<namespace name="is.lill.fipa">
<protocol name="fipa-request" version="1.0"/>
<protocol name="fipa-contractnet" version="1.0"/>
<protocol name="fipa-iterated-contractnet" version="1.0"/>

</namespace>
<namespace name="is.lill.acre">

<protocol name="processdocuments" version="1.0"/>
<protocol name="english-auction" version="1.0"/>
<protocol name="vickreyauction" version="1.0"/>

</namespace>
</namespaces>

</repository>

Figure 7.2: Example of a valid repository.xml file.

In this file, the <base> tag specifies the location of the repository (where the
repository.xml file itself is located).

Following this, a number of namespaces are declared. Each protocol must exist
within a declared namespace, so as to allow for the possibility that different
protocol designers may use the same name for their protocols.

In order to avoid conflicts, it is recommended that namespaces take a form sim-
ilar to the established convention amongst the Java programming community
for creating unique package names [83]. This takes the components of an In-
ternet domain name (separated by dots) and reverses them, component by
component. Further components may then be appended to this, in accordance

1http://www.debian.org

180

with the convention used within the organisation that controls the domain
name. Thus the domain lill.is becomes a namespace prefix is.lill, with
ACRE protocols stored in that domain under the is.lill.acre namespace.

The XSD specifies that the valid characters in a namespace are the same as for
a valid domain name, namely: lowercase letters, numbers, hyphens (but not
as a starting or ending character of a component of the namespace) and dots
(as separators between the components of the namespace).

Within each namespace is a list of protocols, including the name and the ver-
sion number. The version is to ensure that a correction to a previous protocol
will not cause confusion amongst agents that are under the impression that
they are using a protocol they both understand, but in reality are not.

In addition to the repository.xml file, which lists the protocols avail-
able, each protocol must be present in its own file within the repository.
These are stored in a directory named repository that is located un-
der the same directory that holds the repository.xml file (as referenced
in the repository.xml file in the <base> tag). These protocol defin-
itions are also contained in XML files. The filenames follow the format
“namespace name version.acr”. With this system, the URLs of individual pro-
tocols can be constructed by combining the base of the repository with the
known data about the protocol itself. Thus in the repository.xml ex-
ample in Figure 7.2, the process-documents protocol is to be found at
the location http://acre.lill.is/repository/is.lill.examples_

process-documents_1.0.acr.

An XSD file is also available for protocol files, which is contained in Ap-
pendix B. An example of a valid protocol definition is shown in Figure 7.3.

The protocol definition begins by specifying the namespace, name and version
of the protocol contained within the file. This must match the corresponding
entries in the repository.xml file and also the filename in which this pro-
tocol definition was found.

This is followed by an optional <description> tag, which contains an in-
formal description of the purpose of the protocol. This is intended to aid de-
velopers in choosing between available protocols. It is recommended that this,
in conjunction with descriptive names for the states of the protocol, be used in
a way that helps to clarify the situations in which the protocol will be suitable.

The remainder of the file consists of declarations of the states and transitions
that form the protocol, as described in Chapter 5 (and formally in Chapter 6).

181

<?xml version="1.0" encoding="UTF-8"?>
<protocol xmlns="http://acre.lill.is"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://acre.lill.is
http://acre.lill.is/protocol.xsd">
<namespace>is.lill.examples</namespace>
<name>process-documents</name>
<version>1.0</version>
<description>

Example protocol to illustrate use of ACRE
</description>
<states>

<state name="requested"/>
<state name="start"/>
<state name="waiting"/>
<state name="end"/>

</states>
<transitions>

<transition content="process(??docid)" from-state="waiting"
performative="request" receiver="?initiator"
sender="?respondent" to-state="requested"/>

<transition content="process(?docid)" from-state="requested"
performative="refuse" receiver="?respondent"
sender="?initiator" to-state="end"/>

<transition content="processed(?docid)" from-state="requested"
performative="inform" receiver="?respondent"
sender="?initiator" to-state="waiting"/>

<transition content="ready" from-state="start"
performative="inform" receiver="?respondent"
sender="?initiator" to-state="waiting"/>

</transitions>
</protocol>

Figure 7.3: Example of a valid protocol definition file.

Each <state> tag has one mandatory attribute: the name of the state. This is
used in the definitions of the transitions to refer to this state. State names must
be unique within a protocol in order for it to function correctly. There is no
requirement to explicitly mark the initial and final states. These are identified
dynamically as that state with no incoming transition and those states with no
outgoing transitions respectively.

Within a <transition> tag, a number of attributes may be defined. The
from-state, to-state and performative attributes are mandatory. The
former two attributes refer to the name of the state at which the transition
begins and ends, respectively. The latter is the performative that must be con-
tained in a message that is to match the transition.

The other attributes are optional, defaulting to the anonymous variable ? if
they are not defined. This variable will match against any value in the corres-

182

ponding message fields but will not cause any bindings to be created. It is thus
treated in a similar way to a wildcard match.

The sender and receiver attributes are typically variables that, during the
execution of a conversation, bind to the unique identifiers of the agents en-
gaged in the conversation. They may, however, be restricted to specific agent
names if so desired.

The content attribute is a predicate or variable that is matched against the
actual content of the message.

One additional tag available in protocol definitions that is not shown in Fig-
ure 7.3 is the <import> tag. This is used to extend an existing protocol by
importing all of its states and transitions into the protocol being defined. This
is inspired by the approach taken in [100].

The current mechanism for extending protocols is somewhat basic, given that
it simply directly imports a set of states and transitions from another protocol.
This has restrictions in terms of extending multiple protocols that may have
identical names for states that do not represent the same situation. A more
sophisticated mechanism of protocol reuse is a possibility for further work
and is discussed in Section 10.2.

Transitions defined in the protocol containing the <import> tag may refer
to states that are defined in the protocol that is being imported. Figure 7.4
shows an example of this tag in use. This example is illustrated by the protocol
visualisation shown in Figure 7.5.

In these Figures, an implementation of the fipa-iterated-contract-net
protocol [70] can be seen, which is one of the interaction protocols specified by
FIPA. This protocol is very similar to the fipa-contract-net protocol [69],
with the addition that a call for proposals may be sent multiple times, causing
multiple iterations of the process.

This protocol definition indicates that version 1.0 of the fipa-contract-net
protocol, located in the is.lill.fipa namespace is to be imported into this
protocol. The states proposed and invited that are used in the sole trans-
ition contained in this XML definition are defined in the imported protocol.
Similarly, the ?participant and ?initiator variable names are chosen to
match those used in the imported protocol to refer to the participants in the
conversation.

The Finite State Machine illustrating this protocol is shown in Fig-

183

<?xml version="1.0" encoding="UTF-8"?>
<protocol

xmlns="http://acre.lill.is"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://acre.lill.is
http://acre.lill.is/protocol.xsd">
<namespace>is.lill.fipa</namespace>
<name>fipa-iterated-contract-net</name>
<version>1.0</version>
<import>

<namespace>is.lill.fipa</namespace>
<name>fipa-contract-net</name>
<version>1.0</version>

</import>
<states/>
<transitions>

<transition
from-state="proposed" to-state="invited" performative="cfp"
receiver="?participant" sender="?initiator" />

</transitions>
</protocol>

Figure 7.4: Example of the use of the <import> tag in a protocol definition.

Figure 7.5: Finite State Machine illustrating the use of imports in a protocol
definition.

184

Figure 7.6: Screenshot of the Protocol Editor.

ure 7.5. This shows the states and transitions from the imported
fipa-contract-net as solid lines, with the additional transition declared
in the fipa-iterated-contract-net shown as a dashed line. From this
it can be seen that the extra transition fits seamlessly into the pre-existing pro-
tocol, thus promoting reuse in the case of protocols with common bases.

Although the underlying format is XML, a graphical Protocol Editor has also
been created to allow system designers to develop protocols in an easier and
more intuitive manner. A screenshot of this tool can be seen in Figure 7.6.
This tool also includes the ability to manage a protocol repository automat-
ically. In doing so, it creates the correct directory structure, maintains the
repository.xml file and generates the appropriate filenames for each pro-
tocol in the repository.

7.4 Platform Level Components

Figure 7.7 shows the platform level section of the generic ACRE architecture.
This includes all the components of the system that are shared between all
agents on the agent platform. The following Sections discuss these three com-
ponents: two of which are provided by ACRE and the other of which is expec-
ted to be previously available in any framework with which ACRE is integ-

185

Figure 7.7: Platform Level of the Generic ACRE Architecture.

rated.

7.4.1 Message Transport Service

A Message Transport Service (MTS) is a key requirement of FIPA-compliant
MAS systems [62]. Even in systems to do not purport to be FIPA-compliant, a
conversation handling framework such as ACRE is only relevant where there
are existing facilities for the sending and receipt of ACL messages.

The generic architecture requires that some mechanism be pre-existing in any
system into which ACRE is to be integrated. The diagram in Figure 7.7 shows
this as a single MTS component, but there is no reason why this cannot be
made up a number of MTS-type components (possibly each communicating
using ACL over different underlying transport protocols such as HTTP, UDP
or local message passing).

The key requirement is simply that there is a method available by which an
agent may send FIPA ACL messages to others, and also receive messages from
other agents.

The platform-level ACRE components do not interact with this directly, as it
is the individual agents that are involved in the sending and receiving of mes-
sages.

186

7.4.2 Protocol Manager

The Protocol Manager is a shared component that is available to all ACRE-
enabled agents on an agent platform. Its task is to allow all agents on the
platform to share access to any protocols that have been previously fetched
from external protocol repositories, regardless of which agent discovered the
repository’s location.

The ACRE/Agent Interface (see Section 7.5.5) provides a link between the
agent itself and the Protocol Manager, so giving the agent the capability of
requesting access to definitions of protocols that it intends to use. Having re-
quested such a protocol, the Protocol Manager will download its definition if
it is available in any of the External Protocol Repositories of which it is aware.

In addition to this, the Protocol Manager will make agents aware (via the
ACRE/Agent Interface) of any protocols that have been downloaded at the
request of other agents on the platform.

The implementation of the Protocol Manager is a Java object. When integrat-
ing, it will be necessary to wrap this in a suitable manner so that it is discov-
erable and accessible by other system components, particularly the ACRE/A-
gent Interface. Its API allows new single protocols or external protocol repos-
itories to be added to the system, which will then be available to all agents
on the platform as this is a shared component. In the case of external repos-
itories, the Protocol Manager will scan the repository and download all its
protocols. An agent can be made aware of new protocols being added, as the
Protocol Manager raises an event whenever one is added. In practice, this is
done by using Java’s Observable mechanism, whereby an Observer can be
attached to the Protocol Manager and gain access to these events. Finally, it
offers a mechanism whereby an agent can read the details of the Protocol Store
(see Section 7.4.3) in order to find which protocols are currently available.

The specific form in which agents gain information about the Protocol Man-
ager will be different according to the framework and AOP language being
used. The specific details of one concrete implementation may be seen in
Chapter 8. Although this deals with a specific implementation, the data that
can be made available to agents is not platform-dependent.

187

7.4.3 Protocol Store

When an agent requests a protocol definition from the Protocol Manager, it
is downloaded and saved locally in a Protocol Store. This has a number of
advantages. Firstly, it improves access times to protocol definitions, as it is
not necessary to download these from online repositories each time they are
required. Additionally, restarting the agent platform will not result in this
data being lost in the event of an online repository becoming unavailable.
This facilitates the system’s recovery from crashes, as remote protocol repos-
itories do not need to be discovered and explored each time. The Protocol
Store is structured in the same way as an external repository (which means
that it could be read by another agent platform if this was desired). The Pro-
tocol Manager is responsible for creating the requisite protocol definitions and
repository.xml file to accompany them.

Where downloaded protocols import other protocols, the imported protocol
will be incorporated directly when the original protocol is being stored in the
Protocol Store. As the <import> tag refers to specific versions of protocols
that are to be imported, the imported protocols should not change without a
corresponding change in version number. This has the effect that alterations
to the imported protocols will not change those protocols that import them.

Protocol definitions are designed to be static (changes to a protocol should be
reflected in an altered version number), so refreshing the Protocol Store after
checking for updates to existing protocol definitions is not necessary. If a bug
is identified in an existing protocol definition, a new definitions (with an incre-
mented version number) should be created and released to supersede it. This
policy also prevents the situation arising where two agents are erroneously
using different versions of the same protocol.

The Protocol Store is automatically loaded by the Protocol Manager and so no
additional integration effort is required, aside from setting a single parameter
to indicate where the Protocol Store should be created.

7.5 Agent Level Components

The next group of components that require discussion are those that operate
on the agent level. These are components for which a separate instance is
required for each agent in the system. Figure 7.8 shows these components (for

188

Figure 7.8: Platform Level of the Generic ACRE Architecture.

presentation reasons these have been reorganised from Figure 7.1).

As with the platform level components, some of these (with the thicker bor-
ders) are specific to ACRE, with a subset of these being available as concrete
implementations. Those components with thinner borders are required as pre-
requisites of the MAS framework.

7.5.1 Agent Inbox

It is necessary that the messages being sent to the agent are available to the
ACRE components. This allows them to reason about incoming messages so
that they can be matched to existing conversations, or begin new ones.

For any specific integration, it will not necessarily be the case that this feature
will be implemented in exactly this way, via an agent level inbox component.
Any other mechanism by which the ACRE components can gain access to in-
coming messages (including interacting directly with the MTS if necessary) is
acceptable.

189

7.5.2 Agent Deliberative Layer

The Agent Deliberative Layer is the agent program itself, written in some AOP
language. This contains all the reasoning capabilities of the agent, and it is to
this layer that the ACRE/Agent Interface provides information about ongoing
communications and the facility to reason about these. The services provided
by this interface to the agent are outlined below in Section 7.5.5.

7.5.3 Conversation Manager

The Conversation Manager is the most important element of the ACRE archi-
tecture. It represents the running implementation of the formal model shown
in Chapter 6, along with extensions to deal with situations beyond the begin-
ning, advancement and end of conversations that are the subject of the model.
Conversation Managers operate at the agent level, meaning that each agent
has its own instance of a Conversation Manager, which is independent of those
belonging to other agents.

It is the responsibility of the Conversation Manager to accept outgoing mes-
sages sent to it by the agent via the ACRE/Agent Interface and incoming mes-
sages from the Agent Inbox (or equivalent), also via the ACRE/Agent Inter-
face. Both types of messages are matched against the known protocols and
conversations. The Conversation Manager is then responsible for providing
information to the agent about the conversations in which it is engaged.

This information includes details such as the current state of active conversa-
tions, the other participants in conversations and events such as the conversa-
tion being begun, advanced or completed. It will also alert the agent to situ-
ations where a message is not suitable for advancing an active conversation or
beginning a new conversation based on a known protocol. The specific details
of the types of information that the Conversation Manager makes available to
its parent agent are outlined below in Section 7.5.5.

In addition to providing information to the ACRE/Agent Interface for for-
warding to the agent, the Conversation Manager also sends details of active
conversations to the Group Reasoner (discussed below in Section 7.5.4) to en-
able it to reason about groups of conversations.

One extension that the Conversation Manager makes to the formal model is to
expand the list of conversation statuses. As outlined in Section 6.5.7, a conver-
sation’s status will, according to the formal model, be one of active, completed,

190

or failed. The Conversation Manager adds the following possible statuses also:

Ready: A conversation has been created but has no messages as yet.

Stale: A timeout has occurred.

Cancelling: A cancellation request has been made.

Cancelled: The conversation has been cancelled.

A conversation that is “ready” does not yet exist according to the formal
model, and is only available with in the Conversation Manager for conveni-
ence. With any other status, the conversation is still technically “active” ac-
cording to the formal model, as it has neither been successfully advanced to a
final state nor caused to fail by attempting to match an inappropriate message.

Like the Protocol Manager, the Conversation Manager is implemented as a
Java object. Integration of this into an existing MAS framework may require
the creation of a wrapper that allows the Conversation Manager to be discov-
erable and accessible. It also utilises Java’s Observable mechanics to raise
events that are of interest to the associated agent. Within the ACRE subsys-
tem, messages are passed in objects that implement an IACREMessage inter-
face. This requires some integration work within the ACRE/Agent Interface,
which is tasked with translating between the MAS framework’s internal rep-
resentation of messages and that of ACRE.

7.5.4 Group Reasoner

ACRE conversations are between two agents only. However, it is common that
multiple agents may be engaged in conversations that are closely related to one
another. For example, in conducting an auction, an auctioneer agent may com-
municate with many bidders, which engage in separate conversations that are
nonetheless related to one another. Thus ACRE also allows agents to reason
about groups of related conversations or agents so as to better deal with this
type of situation.

The Group Reasoner is the component that facilitates the grouping of related
agents and conversations into groups, providing information about these to
the agent via the ACRE/Agent Interface. Like the Conversation Manager, it
also operates at the agent level, meaning that each agent will have its own
Group Reasoner.

191

The Group Reasoner allows two types of groups to be created: agent groups
and conversation groups.

An agent group is similar to a group of contacts in an address book: a named
group of agents that are linked for a particular purpose (e.g. a set of agents
that have expressed an interest in participating as bidders in an auction).

Conversation groups are groups of related conversations, following the same
protocol, that can be reasoned about. “Group monitors” can be loaded into
the Group Reasoner in order to gain information about the conversations that
form part of the group. These group monitors raise events when particular
circumstances arise that can be seen by the agent. The nature of these events
varies depending on the type of group monitors that have been loaded, with
each having a different purpose.

Whereas the range of events that may be associated with an individual conver-
sation is well defined (e.g. a conversation has begun, been advanced, ended,
failed, etc.), the same cannot be said for groups of conversations. Situations
may arise when some conversations are active while others have ended or
failed. Conversations may be in different states or may arrive at common
states.

Additionally, the policies used for the handling of conversation groups will
also dictate that types of event in which an agent is interested. For example, in
an auction situation, it may be important to conclude the auction quickly and
so a policy may be implemented whereby the auctioneer agent will not wait
for all potential bidders to respond. Instead, it may be interested in an event
stating that 75% of expected responses have been received so that it can then
proceed to accept the best bid received thus far.

Another scenario involves an agent inviting others to participate in some pro-
cess, but allowing preferential treatment to certain potential participants (e.g.
more trusted, the participant has access to greater resources or capabilities,
etc.). This may require different events to be raised regarding preferred agents,
for instance to allow them more time to reply than others.

For reasons such as these, support for generating beliefs from groups of con-
versation groups is more flexible than for individual conversations.

Conversations that are part of groups generate the same events and provide
the same information as standalone conversations. However, the use of group
monitors allows more information to be gleaned from conversation groups
about their progress. These are loaded into the Group Reasoner by the

192

ACRE/Agent Interface at the request of the agent. Different group monit-
ors are designed to raise events in different scenarios, with these being routed
back to the agent through the ACRE/Agent Interface.

A number of default group monitors are packaged with ACRE that deal with
common situations. In addition to these, agent programmers may implement
custom group monitors also, in order to handle any scenarios that are not
covered by the existing default group monitors. This facility is provided due
to the far greater variety of interesting situations in which a group of conver-
sations may find itself, when factors are considered including the state of a
conversation, the participants in a conversation, whether a conversation has
timed out or failed and when new conversations are added to (or removed
from) a group.

Group monitors are implemented so as to allow them to be configured upon
loading by means of parameters that may be passed to them by the ACRE/A-
gent Interface. The number of parameters required varies from monitor to
monitor and is specified within the monitor code itself. Group monitors are
Java objects, rather than depending on deliberative AOP code. The decision to
perform this task at the lower level was made for two key reasons:

1. From an agent’s perspective, an event is a primitive concept. Insisting
that these are generated in the agent’s deliberative AOP code adds un-
necessary complexity at this level. Implementing group monitors in Java
with events being routed through the ACRE/Agent Interface means that
group events are treated in the same way as events arising from the Con-
versation or Protocol Managers.

2. ACRE is intended for use within a variety of MAS frameworks using
a multitude of AOP languages. Requiring group monitors to be imple-
mented in an AOP language would add to the burden of porting ACRE
to a new platform as these would need to be translated to the target AOP
language. As group monitors are an integral part of ACRE, it is more ap-
propriate that these be implemented in the same programming language
as the rest of the system.

7.5.4.1 Default Group Monitors

A number of group monitors are included with ACRE by default. These relate
to common situations in which agents may be interested.

193

AllInState This monitor will raise an event to notify the agent any time
all of the conversations in the group are in a specific state. It takes one
configuration parameter, the name of the state in question. On reaching
the specified state, this event will be raised on every call to this group
monitor for as long as the conversations remain in that state.

AllReachedState The AllReachedState group monitor is very similar
to AllInState, in that it raises an event an event whenever all the con-
versations in the group reach a specific state, provided as its only con-
figuration parameter. Unlike its related monitor, however, once the spe-
cified state is reached no further events will be raised unless one or more
conversations have left the specified state in the meantime.

NoneInState This group monitor is the opposite to the AllInState mon-
itor. It raises events whenever none of the conversations in the group are
in the specified state (again, passed as its only parameter).

AllFinished The AllFinished group monitor will raise an event
whenever the situation arises whereby all of the conversations in the
group have reached some terminal state. A conversation that has failed
or timed out is not considered to be finished for the purposes of this
group monitor. Failed conversations would need to be removed from
the group before the AllFinished event could be raised.

7.5.4.2 Custom Group Monitors

In addition to the default group monitors, it is also possible for developers
to define custom group monitors to deal with less common situations. Cus-
tom group monitors are implemented as Java classes that implement the
IGroupMonitor interface. The recommended way to do this is by extend-
ing the AbstractGroupMonitor class that is also provided with ACRE.

The abstract group monitor handles the initialisation of the group monitor,
including its configuration by means of parameters passed to it when it is cre-
ated.

To extend the AbstractGroupMonitor class, two things are required.
Firstly, it is necessary to set the value of the PARAMS attribute. This is used
to specify (as an int) the number of parameters that instances of this group
monitor should expect when they are being configured. The actual mechan-
ism by which this parameter is passed is platform and language specific and

194

is done via the ACRE/Agent Interface.

In addition to this, an implementation of the event method must be supplied.
This method is called by the event sensor on each iteration of the agent in
order to check whether the group monitor has detected a situation arising in
which it raises an event. The method signature requires that a boolean value
be returned: true if an event has occurred and false otherwise.

The ACRE/Agent Interface will bring this to the attention of the agent
whenever an event occurs.

7.5.5 ACRE/Agent Interface

The ACRE/Agent Interface is the only component of the ACRE architecture
that interacts directly with the existing elements provided by the MAS frame-
work. Thus it is the only component that must be implemented in a platform-
specific way, in order to provide an interface between the platform and the
ACRE components. Operating on the agent level, an instance of an ACRE/A-
gent Interface is created for each agent, to link it with its own Group Reasoner
and Conversation Manager, and with the platform-wide Protocol Manager.

The ACRE/Agent Interface serves three broad principal functions:

Routing Messages to the Conversation Manager Both incoming and outgo-
ing messages must be provided to the Conversation Manager so that they
can be matched against conversations and protocols. In a non-ACRE sys-
tem, outgoing messages are typically sent by the agent directly to the
MTS. In contrast, an ACRE-enabled system requires that the messages
are either routed via the ACRE/Agent Interface or are made available
to it for modification before sending. The modification is performed by
the Conversation Manager, which adds appropriate conversation-id
and protocol parameters to those messages that are sent as part of a
conversation.

Similarly, agents will typically read incoming messages from the Agent
Inbox. In an ACRE system, the ACRE/Agent Interface must also be cap-
able of reading the messages from this inbox in order to send these to the
Conversation Manager.

Providing Additional Complimentary Features: There are some aspects of a
conversation-management system that are not directly provided by the

195

ACRE components. If some feature is absent from both the existing
ACRE components and the MAS framework within which it sits, it can
be included in the ACRE/Agent Interface. One example of such a feature
is the management of an address book. The FIPA standards on identify-
ing agents are very simple, in that they require that each agent have a
unique identifier. However, each agent may have a number of different
addresses by which it can be reached. This may occur if its agent plat-
form uses multiple MTSs that make use of different underlying transport
protocols. If the management of a type of address book is not already
handled by the system, one may be integrated within the ACRE/Agent
Interface.

Providing Information Whenever messages are matched to appropriate con-
versations, it is necessary for the agent to gain knowledge of this process.
Thus the ACRE/Agent Interface has a major role in allowing the Protocol
Manager, Conversation Manager and Group Reasoner to communicate
with the agent.

This information can take the form of one-off events (e.g. a conversa-
tion has been advanced by the receipt of a message) or ongoing know-
ledge (e.g. a particular protocol is available for use). This information
should relate knowledge about individual conversations, protocols and
conversation groups. An illustration of the specific information that can
be provided by the ACRE/Agent Interface is set out as part of the con-
crete implementation outlined in Chapter 8.

Allowing the Agent to Act As well as the ability to gain information about
the active conversations in which it is engaged, an agent must also be
able to act upon these also. For this reason, the ACRE/Agent Interface
is also required to provide an API through which the agent is capable of
performing actions provided by the Protocol Manager, the Conversation
Manager and the Group Reasoner.

The actions provided will depend on the specific platform on which the
system runs, but will typically fall under some or all of the following
categories:

Actions for Setup: Any actions that are required to initialise the various
ACRE components being used.

Actions to Manage Contacts: If address book functionality has been in-
cluded, actions will be required to allow the agent to add or remove

196

contacts to and from this contact list.

Actions to Send Messages: A key capability is the ability to begin and
advance conversations by the sending of messages.

Actions to Manage Conversations: By default, all conversations will
cause events to be generated and will be available. It may be desir-
able to add the ability to remove conversations from memory, either
permanently or temporarily.

Actions to Cancel Conversations: As discussed in Section 5.9.1, ACRE
agents may cancel conversations, or react to a request for cancella-
tion.

Actions for Agent Groups: Adding and removing agents to and from
groups should be available through the interface.

Actions for Conversation Groups: Beginning or advancing groups of
conversations is an important ability. This heading may also in-
clude abilities such as adding and removing conversations to and
from groups, or cancelling groups of conversations.

Unlike the other components that are part of ACRE, the ACRE/Agent Inter-
face is heavily dependent on the nature of the framework within which it
runs. In implementing an ACRE/Agent Interface, it will be necessary to have
it available to its parent agent and also it in turn should have access to that
agent’s Conversation Manager and Group Reasoner as well as the platform-
level Protocol Manager.

Once the ACRE/Agent Interface can discover these components, it should at-
tach itself to them so as to be made aware of the events that they raise. This
is done by extending Java’s Observer interface. Additionally, ongoing in-
formation about conversations can be done by proactively accessing the meth-
ods that the ACRE components make available to read data about the current
state of conversations, protocols and groups. The mechanism by which this is
triggered is heavily platform independent. Many agent architectures operate
in a cyclical manner, with “sensors” or “perceptors” running periodically. Such
an architecture, if available, is a suitable method of integration for elements of
ongoing knowledge.

Another issue to be solved at this level is the passing of messages to and from
the ACRE subsystem. The ACRE/Agent Interface must be capable of access-
ing the messages being sent to and from its agent (by connecting to the MTS

197

and Agent Inbox) and passing these to the Conversation Manager. This will
also require some translation of the messages from their existing representa-
tion into an ACRE-suitable object that extends the IACREMessage interface.

Another integration issue is the handling of the content language that is con-
tained in the messages. As mentioned in Section 5.5, the content language
used with ACRE is, like many AOP languages, based on first-order logic. The
formatting of logic elements may differ between languages, and so translation
will be necessary for this also. This will require a parser to be implemented
that can accept language-specific logic strings and create a set of objects that
represent ACRE’s view of the content language.

7.6 Summary

This Chapter describes the generic ACRE architecture, outlining the various
components that are available and how they integrate into a MAS framework.
The majority of ACRE components are platform-independent and can be in-
tegrated as-is into any Java-based agent platform.

The only component for which re-engineering is required for integration is the
ACRE/Agent Interface, which acts as an intermediary between the agent itself
and the components that make up the ACRE system.

The following Chapter describes in detail a concrete implementation of the
ACRE architecture within the Agent Factory MAS framework. In particu-
lar, this requires in-depth discussion of the ACRE/Agent Interface and how
it facilitates the interactions between the ACRE components outlined in this
chapter and the various Agent Oriented Programming Languages supported
by Agent Factory.

198

CHAPTER

EIGHT

Integration with Agent Factory

8.1 Introduction

Previous chapters described how ACRE handles conversations between
agents, both informally (Chapter 5) and formally (Chapter 6). In the preced-
ing chapter, the generic ACRE architecture was outlined, which shows how
ACRE may be integrated into an existing Multi Agent System (MAS) frame-
work. This Chapter discusses a concrete implementation of ACRE. This imple-
mentation fits into the Agent Factory multi agent framework [36]. It then goes
on to illustrate how an agent programmer may interact with the ACRE com-
ponents through the Agent Oriented Programming (AOP) languages available
within Agent Factory.

8.2 Agent Factory

Agent Factory1 is a FIPA-compliant “cohesive framework supporting a struc-
tured approach to the development and deployment of agent-oriented applic-
ations” [121].

At its core, the framework features a Run Time Environment (RTE) that serves
as the container within which all other components are created. This RTE con-
tains one or more agent platforms, each of which in turn contains the agents that
make up a multi agent application (although agents operating from different
platforms on a variety of networked computers is also a common architecture).
In addition to the agent platforms, the RTE will also facilitate access to a num-
ber of platform services. These are components that are shared amongst all of

1The Agent Factory home page may be accessed at http://www.agentfactory.com

199

the agents that inhabit an agent platform. By default, a local message trans-
port service (to facilitate intra-platform communication between agents using
an Agent Communication Language (ACL)) and an agent management service
(to allow agents to be created, destroyed, started and stopped) are deployed
on an agent platform. However, many other types of platform services are
available (e.g. ACL communication over a network and support for various
agent-augmenting technologies such as the SoSAA component layer [52, 110],
the CArtAgO Agents & Artifacts environment [141] and the Environment In-
terface Standard (EIS) [11]). In addition to these, custom platform services
may be created by agent developers whenever a component or resource (e.g.
database access) is required to be shared amongst multiple agents.

In general, each agent consists of an agent program written in one of a num-
ber of supported AOP languages and optionally one or more actions, sensors
and/or modules. These are discussed in the following Section.

8.2.1 Common Language Framework

The Common Language Framework (CLF) is a set of pre-written components
for Agent Factory that support the building of agent interpreters on top of the
Agent Factory core [145]. These operate within an agent platform to control
the execution of the agent, according to an interpreted AOP language.

A key feature of the CLF is the ability of agents written in different AOP lan-
guages (and therefore using different agent interpreters) to share the same ac-
tions, sensors and modules. These are the three key components in extending an
agent program so that an agent may gain information about its environment
and effect its intentions.

Actions are components that enable an agent to effect some change to its en-
vironment. An interface is defined for each action that defines how it may be
invoked from within an agent program (an identifier and a specific number
of arguments). Sensors support the generation of beliefs for an agent, so as to
furnish it with the knowledge it requires to satisfy its goals. In the event that a
group of sensors and/or actions are linked, they may be defined from within
a module, which may also provide resources that are shared amongst several
sensors and actions.

To date, four AOP langagues have been implemented within the Agent Factory
CLF:

200

AFAPL The Agent Factory Agent Programming Language (AFAPL) is the ori-
ginal AOP language developed in conjunction with the Agent Factory
framework [143]. It is based on a core of beliefs and commitments, with
additional support for other features such as plans and goals.

AF-AgentSpeak is an implementation of the AgentSpeak(L) language pro-
posed by Rao [139]. AgentSpeak(L) is a BDI-based agent programming
language, which features beliefs, plans, goals, actions, intentions and
events as part if its mental model.

AF-TeleoReactive is based on Nilsson’s TeleoReactive model [123]. This
model is based on circuit semantics and has a hierarchical set of action
rules as its core.

AF-ASTR is a hybrid language that combines the benefits of AF-AgentSpeak
with those of AF-TeleoReactive.

Although each of these languages features its own agent interpreter, the frame-
work acts in such a way so that any module (with its associated actions and
sensors) created with one AOP language in mind can also be used in an agent
program written in any other supported language. This includes any further
languages for which a CLF interpreter is added in the future. This is designed
to promote the reuse of code via the creation of cross-language modules.

As with the core of the Agent Factory framework, CLF modules are written in
Java, by extending existing abstract classes that are in turn designed to imple-
ment the interfaces required by a CLF component.

8.3 ACRE in Agent Factory

Agent Factory was chosen as the framework within which a concrete imple-
mentation of ACRE would be developed for a number of reasons:

• Agent Factory is Java-based, which is the same language in which many
other popular multi agent frameworks are implemented (e.g. Jason [19],
JADEX [24], Jack [25]). This means that the platform-independent com-
ponents of the ACRE implementation may be brought to other platforms
in future without difficulty.

201

• As a result of the CLF, Agent Factory supports multiple AOP languages
that can all make use of an ACRE/Agent Interface created for Agent Fact-
ory with the according to CLF principles. Thus the effectiveness of ACRE
may be illustrated in a number of distinctive AOP styles without the re-
quirement of implementing separate ACRE/Agent Interfaces for each.
This is intended to illustrate the wide applicability of ACRE in a variety
of AOP scenarios.

Figure 8.1 shows the architecture used in integrating ACRE into the Agent
Factory Framework. In this diagram, components with thinner borders are
extant within Agent Factory. Thicker borders indicate ACRE components.

Additionally, different styles of lines are used for the data-flow arrows in order
to indicate how these differ from an Agent Factory deployment that does not
make use of ACRE.

• Solid lines indicate those flows of data that are specific to ACRE and are
not present in a non-ACRE-enabled deployment.

• Dashed lines indicate existing, unaltered, data flows. The exchange of
ACL messages between platforms is not affected by the adoption of
ACRE. These still flow through the Message Transport Service. Incoming
messages are stored in an Agent Inbox, where they are collected (via an
appropriate sensor) by the addressee agent.

• Dotted lines show areas where the flow of data has been rerouted when
compared with the standard Agent Factory deployment. Outgoing mes-
sages are normally sent by the agent by direct interaction with the Mes-
sage Transport Service. However, it is necessary for such messages to
be presented to the Conversation Manager and Group Reasoner so that
they can be matched against active conversations (and used in the cre-
ation of new conversations). The protocol and conversation-id

fields, along with recipient details, are added by the ACRE/Agent Inter-
face (after consulting the Conversation Manager) before being sent to the
Message Transport Service for sending.

8.3.1 Platform Services

Agent Factory supports the use of platform services (such as the Message
Transport Services) to allow components to be shared amongst multiple agents

202

Figure 8.1: ACRE Architecture within Agent Factory.

on a platform. As the Protocol Manager operates on the platform level and is
intended to be shared, it is wrapped within a platform service.

The Protocol Manager component itself is no different from the one featured

203

in the Generic Architecture. The use of a dedicated platform service as a wrap-
per allows it to be discovered by other components within an Agent Factory
deployment.

8.3.2 ACRE/Agent Interface

The ACRE/Agent Interface (AAI) is the key component in a concrete imple-
mentation of an ACRE system. As previously discussed in Chapter 7, this is
the only component of the system that is required to be specifically adapted
for use within a particular MAS framework.

The role of the AAI is to expose the capabilities of the other ACRE compon-
ents to an intelligent agent. It is also tasked with providing the agent with
information regarding the status of its interactions with other agents.

The generic ACRE architecture calls for each agent to have its own AAI, which
provides access to the platform-level Protocol Manager, along with the agent-
specific components: the Group Reasoner and the Conversation Manager.

As a component designed to provide information and capabilities to a single
agent, in the context of the CLF it is most suitable to implement the AAI as a
module that can be used with any of the CFL AOP languages.

In the Agent Factory implementation, the AAI is split into two modules:

• The ACRE Module provides an interface to the Conversation Manager
and Protocol Manager in order to support reasoning about individual
conversations.

• The ACRE Group Module provides access to the Group Reasoner and so
furnishes its parent agent with the facilities to create and manage group
monitors, along with providing information about these.

The separation of the AAI allows agent developers to make use of ACRE fea-
tures without the additional overhead of group management if this is not de-
sired. In a situation where the Group Module is not loaded by the agent, the
creation of a Group Reasoner will also be skipped.

The ACRE Module is the key access-point through which an agent gains ac-
cess to the core ACRE infrastructure. On creation, a Conversation Manager
component is generated for the agent that has loaded the module. This is re-
sponsible for handling all conversation reasoning for that specific agent.

204

Additionally, the ACRE Module must also be made aware of the location of
the Protocol Manager Service, by means of the init action outlined in Sec-
tion 8.3.2.1, which must be explicitly invoked by an ACRE-capable agent. This
express initialisation is a consequence of how module loading in Agent Fact-
ory is performed. A module cannot discover a platform service at load time.

As CLF modules, the ACRE Module and ACRE Group Module provide a set
of actions and sensors that encapsulate the capabilities of the ACRE subsys-
tem with which they interface. They allow the agent to effect changes to the
status of the underlying ACRE components. These are outlined in the fol-
lowing Sections, categorised according to how they are used. Where example
code is shown, it is written in the AF-AgentSpeak AOP language. The syn-
tax of action invocation in the other CLF languages may differ slightly but the
way in which the actions may be used does not differ across the various AOP
languages.

8.3.2.1 Actions for Setup

init Initialise the ACRE Module. Because of limitations in the underlying
implementation of how modules are loaded within Agent Factory, it is
not possible to automatically connect the module to the Protocol Man-
ager Platform Service when it is initially loaded. The module binds to
the platform service and gets a list of available protocols that have previ-
ously been loaded.

addRepository(?url) Inform the Protocol Manager of the existence of a
remote repository from which new protocols can be loaded. The ?url
parameter indicates the base of the repository.

8.3.2.2 Actions to Manage Contacts

The existing capabilities of the CLF allow agents to send FIPA messages by
means of a .send action. This requires the agent identifier as one of its para-
meters, in the form agentID(?name,addresses(?address1)) (where the
“addresses” function can specify one or more addresses by which the agent can
be contacted). Rather than requiring the address of an agent to be provided for
every message, the ACRE Module provides an address book functionality that
allows an agent to be referred to only by name. Agents can be added to this
address book in two ways:

205

• The initiator of a conversation will automatically be added to the address
book of the other ACRE-enabled participant in the conversation.

• An ACRE-enabled agent may add a specific contact by using the
addContact action.

addContact(?aid) Add a contact to the address book. There are two ac-
ceptable formats for the ?aid parameter:

1. If the parameter is in the same format as an agent identifier being
passed to the existing CLF .send action, both the name and the
specified addresses of the contact agent are stored in the address
book.

2. If the parameter is a constant, this is taken to be the name of the
agent, with a local address on the same agent platform assumed by
default.

removeContact(?aName) Remove a contact from the address book. Here,
only the unique agent name is required.

8.3.2.3 Actions to Send Messages

start(?pid, ?receiver) Begin a new conversation. The minimal re-
quired parameters are the unique identifier of the protocol that is to be
used in the conversation (?pid) and the unique name of the other agent
that is to be a participant in the conversation (?receiver). A new con-
versation is added to the Conversation Manager that is initially in its start
state (as no messages have yet been exchanged).

Unlike the majority of actions provided by the ACRE/Agent Interface,
the start action is implemented within the Common Language Frame-
work as an “active action”, meaning that it has a return value that may
be assigned to a variable. Here, the return value is the unique identifier
of the conversation that has been created by the Conversation Manager
as a result of the action (assuming the protocol is known).

start(?pid, ?receiver, ?performative, ?content) This second
version of start includes two further parameters and is intended for
use when it is desired to also to send the first message. The performative

206

of this message must be supplied, along with the message content. An
example of how this would be used is as follows:2

?cid = acre.start(acre-vickrey,agent1,inform,test);

Essentially, this is shorthand for first initiating a conversation and then
advancing it. As such, it is equivalent to the following (the advance

action is discussed below):

?cid = acre.start(acre-vickrey,agent1),

acre.advance(?cid,inform,test);

As with the two-argument form of the start action, this also returns the
unique conversation identifier that has been generated by the Conversa-
tion Manager.

start(?pid,?receiver,?performative) This three-argument version
of start is identical to its four-argument counterpart except that the
first message is sent with an empty content field.

advance(?cid,?performative,?content) Sends a message that is part
of a conversation (identified by its unique identifier, ?cid). The name
and address of the agent that is to receive the message have already been
recorded in the Conversation Manager and as such is handled automatic-
ally. The performative and content of the message must also be specified.

advance(?cid,?performative) An advance action is also available to
send a message with an empty content field, given a conversation iden-
tifier and a performative.

8.3.2.4 Actions to Manage Conversations

forget(?cid) The conversation identified by ?cid is permanently re-
moved from memory.

archive(?cid) In some circumstances, it may not be desirable to perman-
ently remove all details of a conversation, yet details of all conversations
need not be immediately available. The archive action allows details of
a conversation to be temporarily removed from the belief base of an agent
in a way that allows them to be recalled later. A large belief base may

2In these examples, “acre” is the name given to the ACRE module when it is loaded by
the agent.

207

cause long processing times for agents, so this action allows the agent’s
processing to become more streamlined.

recall(?cid) A previously archived conversation can be recalled.

setTimeout(?cid,?timeout) May be invoked at any time during a con-
versation. Its effect is that any further messages that are sent as part of
that conversation will have a timeout associated with them. As previ-
ously discussed in Section 5.9.2, this is implemented by way of the FIPA
reply-by performative. The ?timeout parameter should be the num-
ber of seconds from the sending of the message within which the recip-
ient is required to respond. The task of converting this to a timestamp
by which a response must be received is automatically performed by the
ACRE/Agent Interface.

annotate(?cid,?annotation) Conversations may be annotated to re-
cord details about them that are not recorded by default by the Conver-
sation Manager. This is offered as an alternative to adopting beliefs in the
usual way, since these would need to be handled separately. Annotations
are removed whenever a conversation is forgotten, and are archived and
recalled along with their associated conversations also.

deannotate(?cid) Removes all annotations from a specified conversation.

deannotate(?cid,?annotation) Removes a specified annotation from a
conversation if it exists.

8.3.2.5 Actions to Cancel Conversations

cancel(?cid) Initiates the cancellation meta-protocol described in Sec-
tion 5.9.1 for a conversation that has not yet terminated. The actual mech-
anics of how the messages are formed are abstracted from the agent pro-
grammer and handled automatically by the Conversation Manager. The
agent merely needs to supply the identifier of the conversation that is to
be cancelled. This results in the appropriate cancel message being sent
to the other participant. The response will likewise be handled auto-
matically by the Conversation Manager, cancelling the conversation if
confirmation is received and returning it to active status if the cancella-
tion fails. In each scenario, an appropriate event is raised so the agent is
aware of the outcome of the attempted cancellation.

208

confirmCancel(?cid), denyCancel(?cid) Two actions are provided
for dealing with requests from another agent to cancel a conversation.
These are convenience actions where the Conversation Manager auto-
matically takes care of constructing appropriate messages to reflect the
intention of the agent to either agree to the cancellation of a conversa-
tion or to deny this cancellation (by means of a failure message). In
each case, the action should be used in response to an event notifying the
agent of a request to cancel the conversation, otherwise the actions will
fail.

8.3.2.6 Sensors

The ACRE Module provides two sensors to provide the agent with inform-
ation about loaded protocols, conversation states, conversation participants
and other information related to the ACRE components. Each of these sensors
gathers information from all of the connected ACRE components, but they dif-
fer in the type of information they provide:

Knowledge Sensor The Knowledge Sensor consistently provides information
about the ongoing state of the ACRE components, along with the conver-
sations and protocols they manage. On each iteration of the Knowledge
Sensor, it generates a consistent set of beliefs about active conversations
and available protocols, in order to facilitate the agent in reasoning about
these.

The beliefs that can be generated, when appropriate, by the Knowledge
Sensor are as follows:

conversationArchived(?cid,?pid,?aName) Indicates that the
conversation identified by ?cid has been archived and provides a
minimal amount of information about it, namely the identifier of the
protocol that conversation followed (as ?pid) and the name of the
other participant (the ?aName parameter). This is the only percept
that is generated for archived conversations. It is necessary to use
the recall action in order to have other knowledge be available.

conversationStatus(?cid,?status) This indicates the status of
a conversation of which the Conversation Manager is aware. The
?cid parameter (as in all the beliefs in this section) refers to the
unique identifier of the conversation to which the belief relates. The

209

?status parameter can be one of “ready”, “active”, “completed”,
“failed”, “stale”, “cancelling” or “cancelled”, as discussed in Sec-
tion 7.5.3.

conversationParticipant(?cid,?aName) This belief allows the
agent to become aware of the identity of the other agent (in ?aName)
that is party to the conversation identified by ?cid.

conversationProtocolID(?cid,?pid) Each protocol is identified
by a unique identifier consisting of three separate parts: a
namespace, a name and a version number, as discussed in Sec-
tion 7.3.1. This belief contains the entire unique identifier of the
protocol that the conversation follows.

conversationProtocolName(?cid,?pname)

conversationProtocolNamespace(?cid,?pnamespace)

conversationProtocolVersion(?cid,?version) These three
percepts offer more convenient mechanisms by which an agent may
reason about the individual components of the overall protocol
identifier.

conversationState(?cid,?state) The ?state parameter refers
to one of the states that are declared as part of the Finite State Ma-
chine defining the underlying protocol and give an indication of the
progress of the conversation to date.

conversationLength(?cid,?length) The ?length parameter
refers to the number of messages that have been exchanged as part
of the conversation to date. This is helpful in identifying changes in
state for protocols where loops exist, which allow the conversation
to reach the same state on multiple separate occasions. An example
of this can be seen in the Process Documents example shown in Sec-
tion 5.8.3.

knownProtocol(?pid) This is the only belief of the Knowledge
Sensor that does not come from the Conversation Manager. In-
stead, a belief of this type is adopted for every protocol (identified
by ?pid) that has been loaded into the Protocol Manager. This al-
lows the agent to check whether its ACRE components are aware of
a particular protocol before attempting to instigate a conversation
that follows it.

annotation(?cid,?annotation) Annotations added using the

210

annotate action are accessed by the Knowledge Sensor to allow
the agent to reason about them.

conversationHistory(?cid,?i,?type,?p,?content) Details
of conversations that have not been forgotten or archived are
made available using this percept. A percept is generated for each
message that has been part of the conversation identified by ?cid.
The information available consists of the place of the message in the
conversation (the ?i parameter, beginning at 1 for the first message
in the conversation). The ?type parameter indicates whether the
message was “sent” or “received”, and must contain one of those
two values. The ?p (performative) and ?content parameters refer
to the details of the message itself.

Event Sensor The Event Sensor causes the agent to adopt beliefs about one-
off events arising as a result of activity within the ACRE components.
Unlike the Knowledge Sensor, these are not repeated, as the sensor con-
sumes any available events on each iteration. The conversation-specific
events consumed by the Event Sensor are those added by the Conversa-
tion Manager in Chapter 6.

The events consumed by the Event Sensor are as follows:

ready(acre) The ACRE module has been successfully loaded and has
bound itself to the Protocol Manager service.

conversationAdvanced(?cid,?state,?length) A conversation
identified by ?cid has been advanced by the receipt or send-
ing of a new message. In addition, the ?state parameter also
indicates the state the conversation has reached by advancing.
The ?length parameter indicates the number of messages that
have now been part of the conversation. This ensures that each
conversationAdvanced event is unique, even within conversa-
tions whose protocol definitions allow the same state to be reached
multiple times.

conversationMessage(?cid,?performative,?content)

Whenever a conversation is advanced, it is important for the
agent to become aware of the details of the message that caused
this to occur. The performative of the message and the mes-
sage contents are given as the ?performative and ?content

parameters respectively. The sender of the message can be ascer-

211

tained by cross-referencing the conversation identifier with the
conversationParticipant belief generated by the Knowledge
Sensor.

conversationStarted(?cid)

conversationEnded(?cid)

conversationFailed(?cid) A new conversation has begun, fin-
ished or failed. These events are raised by the Conversa-
tion Manager. A conversation fails when a message pur-
ports (via its conversation-id parameter) to advance a con-
versation but cannot trigger any active transition. The other
events are always accompanied by conversationAdvanced and
conversationMessage events, as they require normal advance-
ment of the conversation to have occurred.

conversationCancelRequest(?cid) An attempt to cancel a con-
versation has been made (see Section 5.9.1).

conversationCancelConfirmed(?cid)

conversationCancelFailed(?cid) After a cancel message is
sent, the receiver of that request must confirm the cancellation of
the conversation or indicate that this cancellation has failed. These
are indicated by the use of the conversationCancelConfirmed
and conversationCancelFailed events respectively.

conversationTimeout(?cid) For conversations that have timeouts
associated with them, the Conversation Manager will be responsible
for checking the status of conversations so as to raise an appropriate
event whenever the timeout time has been passed.

unmatchedMessage(?performative,?sender,?content) An
unmatched message is one that cannot be successfully matched
against any active conversation so as to advance it and is incapable
of initiating a conversation that follows any known protocol. This
belief provides the details of the message in question.

ambiguousMessage(?performative,?sender,?content) An
ambiguous message is one that is capable of advancing/initiating
multiple active conversations/protocols. It can only arise when
a message is sent without a conversation-id or protocol

parameter.

212

8.3.3 ACRE Group Module

The ACRE Group Module is separate to the ACRE Module so that an agent de-
veloper may choose whether or not to load support for conversation and agent
groups. The Group Reasoner is only created upon an ACRE Group Module
being loaded. Without this, all conversations are treated individually.

As with the ACRE Module, the ACRE Group Module is intended to constitute
part of the ACRE/Agent Interface: specifically to allow the agent to interact
with the Group Reasoner component. As a CLF module, it also provides a
number of actions and sensors to facilitate this interaction. These are outlined
in the following Sections. The Group Reasoner supports the grouping of both
agents and conversations. As these are different entities, the actions relating to
each are outlined separately.

8.3.3.1 Actions Relating to Agent Groups

init The init function performs the first initialisation of the ACRE group
module. This should be done after the ACRE Module has previously
been loaded, as the ACRE Group Module makes use of this to send its
individual messages and for access to the Conversation Manager.

newAgentGroup(?agid) A new group of agents is created. The ?agid

parameter is the unique identifier given to the agent group3. An empty
group is created with the given identifier. Agents can be subsequently
added using the addAgent action.

addAgent(?agid,?agent-list) The addAgent action allows agents to
be added to an existing agent group identified by ?agid. The
?agent-list parameter can be either a single agent identifier or a list
of agent identifiers, as follows:4

// single agent

acreGroup.addAgent(group1,agent1)

// multiple agents

acreGroup.addAgent(group1,[agent2,agent4,agent4])

3In this chapter, the name ?agid is used for the identifiers of groups of agents, whereas
conversation group identifiers are expected whenever a parameter named ?cgid is used.

4In these examples, “acreGroup” is used as the name under which the ACRE group mod-
ule was loaded by the agent.

213

newAgentGroup(?agid,?agent-list) A second version of
newAgentGroup allows for the creation of a new agent group whose
members are specified on creation. An example of its use, to create a
group named “group1” consisting of the agents “agent1” and “agent2”
is as follows:

acreGroup.newAgentGroup(group1,[agent1,agent2])

The above code is equivalent to first calling the one-argument
newAgentGroup action, followed immediately by using addAgent to
add the requisite agents to the newly-created group, as follows:

acreGroup.newAgentGroup(group1),

acreGroup.addAgent(group1,[agent1,agent2])

removeAgent(?agid,?agent-list) Remove an agent or list of agents
from a specified agent group.

disband(?agid) The disband action will cause an agent group to be re-
moved from the Group Reasoner’s memory so it can no longer be ref-
erenced. This means that no agent can be added or removed to or from
this group, and that no new conversation groups can be initiated with
this group of agents.

8.3.3.2 Actions Relating to Conversation Groups

start(?pid,?agid) Begin a group of related conversations. Each conver-
sation must follow the same protocol, (identified by ?pid). This action
begins a conversation with each of the members of the specified agent
group. Initiating new conversations results in the creation of a conver-
sation group, the unique identifier of which is the return value of the
function.

?cgid = acreGroup.start(acre-vickrey,group1)

The individual conversations are assigned their own unique identifier,
of which the agent is made aware through its knowledge sensors (see
Section 8.3.2.6). Each conversation is initiated in its starting state, as no
messages are sent by invoking this action.

214

start(?pid,?agid,?performative,?content) The four-argument
version of the start action combines the creation of a conversation
group with the sending of the first message in each of the conversations
in the group. As with the two-argument start action, the return value
is the unique identifier of the conversation group that is created.

All messages sent using this action are identical: if it is desired to send
customised messages to each recipient then the conversation group must
be initially created using the two-argument start action, and each con-
versation must then be individually advanced using the advance action.

start(?pid,?agid,?performative) A three-argument version of
start allows the initial message in each conversation to be sent with an
empty content field.

remove(?cgid,?cid) The remove action removes a conversation (identi-
fied by the ?cid parameter) from a conversation group. This is useful in
circumstances such as a participant declining to bid in an auction.

advanceAll(?cgid,?performative)

advanceAll(?cgid,?performative,?content) This is a convenience
action for situations where it is desired to send the same message as part
of all of the conversations in a group. Specifying content for the message
is optional.

Depending on the state of each of the group conversations, it may be the
case that such a message does not trigger any active transition of one or
more conversations. If this is the case, those conversations for which the
message is an appropriate next step will be advanced successfully. Other
conversations will not be advanced and an unmatchedMessage event
will be triggered and brought to the agent’s attention via the event sensor
(see Section 8.3.2.6).

watch(?group-name,?monitor-list) Attach group monitors (see Sec-
tion 7.5.4) to a conversation group. The ?monitor-list para-
meter provides a list of the group monitors that are to be attached
to each group. Each of these should be the class name of a Java
class that implements the IGroupMonitor interface, along with as-
sociated parameters. If a package name is not provided, it is as-
sumed that the monitor is to be loaded from the default package
(namely is.lill.acre.group.monitor). Following the class name,

215

a comma-separated list of parameters (the number of which should
match the PARAMS attribute provided in the class) should follow within
parentheses. An example of how the AllInState group monitor is ad-
ded is as follows:

acreGroup.watch(group1,AllInState(started))

Here, group1 is the unique identifier of the conversation group that is to
be watched. The AllInState group monitor is a default monitor and
so it does not require a package name. This requires just the name of the
underlying protocol as its only parameter.

unwatch(?cgid,?description-list) This is the opposite of the watch
action. The ?description-list parameter again contains descrip-
tions of group monitors. In this case, any group monitors that were
loaded with these descriptions are removed from the Group Reasoner
and will no longer raise any events.

unwatch(?cgid) A more general form of the unwatch action, this removes
all group monitors from the specified conversation group.

setTimeout(?cgid,?timeout) The group setTimeout action operates
in a similar way to its counterpart for individual conversations. The same
timeout value is set for all conversations in the group.

newGroup(?cgid) Creates a new, empty, conversation group. Conversa-
tions can be explicitly added to and removed from this group at a later
time.

add(?cgid,?cid) Adds an existing conversation (identified by ?cid) to a
conversation group.

remove(?cgid,?cid) Removes a specified conversation from a conversa-
tion group.

annotate(?cgid,?annotation)

deannotate(?cgid)

deannotate(?cgid,?annotation) These three actions operate in exactly
the same way as their counterparts for single conversations, discussed in
Section 8.3.2.4. The ACRE Group module also allows annotations to be
added to and removed from conversation groups.

216

8.3.3.3 Sensors

In the same way as the ACRE Module, the ACRE Group Module also features
a Knowledge Sensor and an Event Sensor. Once again, the Knowledge Sensor
makes the agent aware of ongoing situations whereas the Event Sensor con-
sumes one-off events that occur in connection with groups of conversations.

Knowledge Sensor The ACRE Group Module’s Knowledge Sensor provides
information only on the Group Reasoner. Knowledge about individual
conversations, whether members of a conversation group or not, is
provided by the Knowledge Sensor that is part of the ACRE Module.

groupMember(?agid,?aid) An agent (identified by ?aid) is a mem-
ber of the specified agent group.

conversationGroup(?cgid,?cid) A conversation (identified by
?cid) is a member of a specified conversation group.

groupSize(?cgid,?size) The number of conversations that are
members of the conversation group.

Event Sensor The Event Sensor provided by the ACRE Group Module con-
sumes only those events that relate to conversation groups. No changes
are made to agent groups without the direct invocation of an action by
the agent (which will fail if an error occurs). Conversations operating
within a group are still managed on the individual level by the Conver-
sation Manager, so in the same way as the Knowledge Sensors, the Event
Sensor that is part of the ACRE Module will adopt beliefs in response to
conversations beginning, advancing and ending in the same way as for
conversations that are not part of groups. The ACRE Group Module’s
Event Sensor only handles additional events that are not covered within
the existing Event Sensor.

groupEvent(?cgid,?monitor-description) Indicates that some
event has been raised by an active group monitor attached to a par-
ticular conversation group. Such an event occurs whenever the
event method of a loaded group monitor returns true (see Sec-
tion 7.5.4). When this occurs, the ?monitor-description is the
same as that used to initially load the group monitor in the watch
action that is also provided by the ACRE Group Monitor.

As an example, suppose a group monitor had been loaded using the
following code:

217

acreGroup.watch(myGroup,AllReachedState(bid_submitted))

An event that is raised by this group monitor would be:

groupEvent(myGroup,AllReachedState(bid_submitted))

8.4 Implementation of Example Protocols

In previous chapters, a number of protocols have illustrated the features of
ACRE in both informal (in Chapter 5) and formal (in Chapter 6) settings. This
Section completes that series of examples by illustrating how agent programs
following these sample protocols could be created using the Agent Factory
implementation of ACRE.

In each case, the agent programs presented here are intended to be for illustrat-
ive purposes only. Thus some shortcuts have been taken in order to simplify
the examples with the intention of highlighting the communicative aspect of
the programs.

8.4.1 Request/Response Protocol

Figures 8.2 and 8.3 show implementations for the Request/Response Protocol
(originally shown in Figure 5.8). These sample agents are intended to illustrate
how ACRE integrates into AF-AgentSpeak to facilitate communication. For
this reason, the protocol itself is not required to be realistic (the semantics of the
request and inform performatives are not suited to messages sent without
content, for example). The agents have merely been written to send messages
that follow the protocol.

Figure 8.2 shows the code for the agent that initiates the conversation. The
first line is a requirement of all AF-AgentSpeak agents, specifying the type of
agent the code represents. Following this, the ACRE module is loaded and
initialised. This is common to all ACRE-enabled agents.

Two rules form the main body of the agent. The first (beginning on line 8) is
triggered by the ready(acre) event, which is raised once the ACRE mod-
ule has completed its setup (i.e. binding to the Protocol Manager platform
service and creating a Conversation Manager for this agent). It assumed that
this agent has been given an initial belief of the form request(agentName)

from which it can become aware of the name of the other agent in the con-
versation. The acre.start action initiates a new conversation of the type

218

1 #agent Requester
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4

5 +initialized : true <-
6 acre.init;
7

8 +ready(acre) : request(?responder) <-
9 acre.start(request-response,?responder,request);

10

11 +conversationAdvanced(?cid,end,?l) :
12 conversationProtocolName(?cid,request-response) <-
13 .println("Conversation ended: " + ?cid);

Figure 8.2: ACRE-enabled Requester agent for Request/Response Protocol.

1 #agent Responder
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4

5 +initialized : true <-
6 acre.init;
7

8 +conversationAdvanced(?cid,requested,?l) :
9 conversationProtocolName(?cid,request-response) <-

10 acre.advance(?cid,inform);

Figure 8.3: ACRE-enabled Responder agent for Request/Response Protocol.

request-response, with the first message being addressed to the other
agent. The performative of this first message is request and it has no content.

The second rule (beginning on line 11) deals with the end of the conversation.
If a conversation following the request-response protocol advances to the
state named end then it simply prints that information to the console.

The implementation of the other agent in this conversation is shown in Fig-
ure 8.3. This agent also features the same initialisation code as the Requester
agent.

The only rule for this agent that is relevant to communication is the
one beginning on line 8. This responds to a conversation following the
request-response protocol that has been advanced to the requested

state. The response consists only of an inform message with no content.

219

8.4.2 Status Report Protocol

ACRE implementations of the Status Report Protocol (originally shown in Fig-
ure 5.12) are shown in Figures 8.4 and 8.5.

1 #agent ACREStatusRequester
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4

5 +initialized : true <-
6 acre.init;
7

8 +ready(acre) : askStatus(?responder) <-
9 acre.start(status,?responder,request,status(?responder));

10

11 +conversationAdvanced(?cid,done,?l) :
12 conversationHistory(?cid,?l,received,inform,statusOf(?o,?s)) <-
13 .println("Status of " + ?o + " was " + ?s);

Figure 8.4: ACRE-enabled Requester agent for Status Report Protocol.

1 #agent ACREStatusResponder
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4

5 +initialized : true <-
6 acre.init;
7

8 +conversationAdvanced(?cid,requested,?l) :
9 conversationProtocolName(?cid,status) &

10 conversationHistory(?cid,?l,received,request,status(?obj)) &
11 name(?obj) &
12 status(?status) <-
13 acre.advance(?cid,inform,statusOf(?obj,?status));

Figure 8.5: ACRE-enabled Responder agent for Status Report Protocol.

As with the agents for the Request/Response protocol, both of these agents
have the code necessary to load and initialise the ACRE module. The
ACREStatusRequester agent is seeded with an initial belief of the form
askStatus(agentName) that causes the rule beginning on line 8 to fire as
soon as the ACRE module is ready. A new conversation is begun using the
status protocol that asks the ACREStatusResponder agent what its status is.

Once the other participant has responded (thus bringing the state of the con-
versation to the end state), it prints the details of the message it received.

For the ACREStatusResponder agent, it responds to messages following the

220

status protocol that bring the conversation to the requested state. By de-
fault, each AF-AgentSpeak agent has a name belief about what its own name
is. Line 11 checks if this is the same as the entity about which the received
message was enquiring (the variable is bound to the value from the message
in line 10). For simplicity, the ACREStatusResponder agent is seeded with an
initial belief status(up) that is matched in line 12. The agent continues the
conversation in line 13 by informing the initiator of its status.

These simple agents illustrate how ACRE can be used within AF-AgentSpeak.
However, to fully demonstrate the benefits of using ACRE, it is necessary to
also draw comparisons with agent code that achieves the same task without
the use of ACRE.

1 #agent SimpleStatusRequester
2

3 +initialized : askStatus(agentID(?responder,?addr)) <-
4 .send(request,agentID(?responder,?addr),status(?responder));
5

6 +message(inform,?sender,statusOf(?o,?s)) : true <-
7 .println("Status of " + ?o + " was " + ?s);

Figure 8.6: Non-ACRE Requester agent for Status Report Protocol.

1 #agent SimpleStatusResponder
2

3 +message(request,?sender,status(?obj)) :
4 name(?obj) &
5 status(?status) <-
6 .send(inform,?sender,statusOf(?obj,?status));

Figure 8.7: Non-ACRE Responder agent for Status Report Protocol.

Figures 8.6 and 8.7 show code to implement simple, naı̈ve agents to follow
the Status Report protocol. Here, agents send and receive individual messages
that act as standalone communications with no formal link between them. As
with the ACRE version, the SimpleStatusRequester agent is given an initial
belief about the agent it needs to contact for a status update. Line 4 illustrates
how the address of the receiver agent must be explicitly set every time a mes-
sage is sent. ACRE assumes a local address unless specified otherwise when
sending the message or when adding an agent to the address book.

Upon receipt of a reply (in the rule beginning on line 6), it simply prints the
status of the responder agent to the terminal.

221

For the SimpleStatusResponder agent, it replies to any request for a status by
sending a message back to the agent who sent the request.

Although these implementations will typically have the same effect as the
ACRE-enabled agents, additional checks that are performed by ACRE are not
available in this situation. A consequence of this is that the rule beginning on
line 6 of the SimpleStatusRequester agent will accept a message from any agent
informing it of the status of any item, as this rule is independent of the sending
of the initial request message.

To combat this shortcoming, the SimpleStatusRequester must be adapted to
keep track of what other status request has been made of another agent. Fig-
ure 8.8 shows a superior implementation of this agent. In this code, an addi-
tional belief is adopted to record the fact that a status has been requested of
another agent (this can be seen on line 4). Following this, the second rule will
only fire if the agent sending the response is the agent to whom the initial re-
quest was made and the object whose status is being reported is the also the
subject of the original request.

1 #agent BetterStatusRequester
2

3 +initialized : askStatus(agentID(?responder,?addr)) <-
4 +asked(status(?responder,?responder)),
5 .send(request,agentID(?responder,?addr),status(?responder));
6

7 +message(inform,agentID(?name,?addr),statusOf(?obj,?status)) :
8 asked(status(?name,?obj)) <-
9 .println("Status of " + ?obj + " was " + ?status);

10

Figure 8.8: Better Non-ACRE Requester agent for Status Report Protocol.

In an ACRE-enabled agent, such checks are unnecessary, as the protocol defin-
ition insists that the receiver of the original message is the same as the sender
of the response. The use of the ?obj variable in the protocol definition also en-
sures that the same item must the subject of both the request and the response.
If this is not the case then an unmatchedMessage event will be raised, which
can then be handled separately.

Omitting these checks from a non-ACRE agent may result in unanticipated
situations arising whereby rogue messages are received from malicious, de-
ceitful or malfunctioning agents and these are being acted upon unintention-
ally. This problem is more pronounced in a larger agent that is expected to

222

conduct multiple conversations (possibly following the same protocol) with
many agents at once.

8.4.3 Process Documents Protocol

The final sample protocol is the Process Documents protocol seen originally in
Figure 5.18. This is a more complex protocol that allows the conversation to
loop between two states until an agent refuses to process further documents.

In order to facilitate an implementation of this protocol, a simple scenario is
proposed. After the ProcessResponder agent indicates that it is ready to pro-
cess documents, the ProcessRequester agent requests it to process documents
identified by integer identifiers. It is assumed that the ProcessResponder has
an action available to allow it to perform this processing (not shown). 10 doc-
uments will be processed before the ProcessResponder refuses to process a
subsequent document, leading to the end of the conversation.

The code to implement these protocols can be seen in Figures 8.9 and 8.10. The
ProcessRequester agent has one additional element to its initialisation rule that
is not present in previous ACRE implementations. The last belief is used
to record the last document that has been processed. Assuming document
identifiers begin at 1, the initial belief is effectively recording the fact that no
documents have yet been processed.

Following this, the second rule in the ProcessRequester agent (beginning on
line 9) is to react to a situation where any conversation following the Process
Documents protocol reaches the waiting state by requesting that the parti-
cipant processes the next document in sequence. Finally, the belief about the
last document to be processed is updated using the built-in .replace action.

The ProcessResponder agent is more complex. The initial task to be performed
is to inform the ProcessRequester that it is ready to begin processing. This is
done on line 11 after adding the name of the ProcessRequester to its internal
address book (it is assumed that an initial requester belief has been supplied
to the ProcessResponder so that it will know which agent to contact). Having
started the new conversation on line 11, the conversation identifier that was
automatically generated by ACRE is recorded in the ?cid variable, as the de-
veloper wished to use that information on the following line.

Line 12 illustrates how ACRE’s annotation feature can be used in AF-
AgentSpeak code. In this case, it is used as a mechanism to record how many

223

1 #agent ProcessRequester
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4

5 +initialized : true <-
6 +last(0),
7 acre.init;
8

9 +conversationAdvanced(?cid,waiting,?l) :
10 conversationProtocolName(?cid,process-documents)
11 & last(?last) <-
12 ?next = ?last + 1,
13 acre.advance(?cid,request,process(?next)),
14 .replace(last(?last),last(?next));

Figure 8.9: Requester agent for Process Documents Protocol.

1 #agent ProcessResponder
2

3 module acre -> is.lill.acre.agent.module.ACREModule;
4 module proc -> is.lill.acre.examples.ProcessDocuments;
5

6 +initialized : true <-
7 acre.init;
8

9 +ready(acre) : requester(?name) <-
10 acre.addContact(?name),
11 ?cid = acre.start(process-documents,?name,inform,ready),
12 acre.annotate(?cid,processed(0));
13

14 +conversationAdvanced(?cid,requested,?l) :
15 conversationProtocolName(?cid,process-documents) &
16 conversationHistory(?cid,?l,received,request,process(?docID)) &
17 annotation(?cid,processed(?done)) <-
18 if (?done < 10) {
19 proc.process(?docID),
20 ?newdone = ?done + 1,
21 acre.deannotate(?cid,processed(?done)),
22 acre.annotate(?cid,processed(?newdone)),
23 acre.advance(?cid,inform,processed(?docID))
24 }
25 else {
26 acre.advance(?cid,refuse,process(?docID))
27 };

Figure 8.10: Responder agent for Process Documents Protocol.

224

documents have been processed as part of a particular ongoing conversation.
The code as written will cause the agent to agree to the processing of ten docu-
ments from any conversation that it initiates, before refusing to process at the
eleventh document. The use of annotations links this information to a particu-
lar conversation, ensuring that this information does not need to be explicitly
removed via manually-written code once the conversation has ended.

The third rule in the ProcessResponder agent (beginning on line 14) reacts to a
request to process a document. The ACRE Conversation Manager ensures that
this request has been sent by an agent with which the ProcessResponder has
begun a conversation. Thus another ProcessRequester agent could not have
work done for it without agreeing beforehand that it may do so.

The rule will fire only if a message is received as part of a Process Documents
protocol and lines 16 and 17 bind the ?docID and ?done variables to the iden-
tifier of the document to be processed and the number of documents previ-
ously processed as part of this conversation respectively.

If fewer than ten documents have previously been processed, the request will
be satisfied, the agent will record the new total of documents processed as part
of this conversation and finally use ACRE’s advance action to send a message
to indicate that the processing has been completed.

If ten documents have already been processed, a refuse message will
be sent that brings the conversation to an end. In this simple scenario,
neither agent takes any additional action once the conversation ends, but the
conversationEnded event would be raised in both agents, allowing the de-
veloper to program the agents to act accordingly.

8.5 Summary

This Chapter has discussed a concrete implementation of the Generic ACRE
Architecture, which was presented in Chapter 7. This implementation is in-
tegrated into the FIPA-compliant Agent Factory framework, leveraging the
Common Language Framework (CLF) to allow it to be accessible to developers
using multiple AOP languages.

The main focus of this implementation is the platform-specific ACRE/Agent
Interface that is implemented as two CLF Modules: the ACRE Module (deal-
ing with individual conversations and protocols) and the ACRE Group Mod-

225

ule (providing access to a Group Reasoner that supports the combination of
related conversations into groups that can be reasoned about collectively).

The core role of these modules is to provide a variety of actions and sensors
that form an API to the various platform-independent ACRE components.
These allow an agent developer much flexibility in writing agents that are cap-
able of reasoning about their interactions in a more structured fashion than
adopting beliefs about individual communications.

This can be seen in the sample agents shown that implement example proto-
cols using ACRE. The use of ACRE removes the responsibility for verifying
aspects of the communication from the agent developer. As ACRE verifies
the sender, content and order of messages, it is not necessary for developers
to contend with these type of communication issues, as they would if using
individual message receipt beliefs and sending actions.

The following Chapter outlines an evaluation to gauge the relative effective-
ness of using ACRE when compared with creating agents using the existing
message-sending capabilities of an agent framework that does not support
conversation reasoning.

226

CHAPTER

NINE

Evaluation

9.1 Introduction

The previous chapters set out the capabilities of ACRE and the means by which
an AOP programmer can interact with the framework using the ACRE/A-
gent Interface. In order to demonstrate the effectiveness and usefulness of the
ACRE approach, this Chapter describes a user trial that was conducted using
students from two distinct classes with different levels of programming exper-
ience. Participants were tasked with writing a solution to a specially-designed
problem that was posed to them. The problem was designed to require inter-
agent communication while not being dependent on complex reasoning. Half
of the students were requested to use ACRE in their solution, with the other
half using pre-existing message-handling facilities.

The code from both groups’ implementations was analysed using both object-
ive numeric metrics and subjective analysis. This was intended to ascertain
whether the use of ACRE added to the effort required by a developer to im-
plement a solution, in addition to identifying areas where the use of ACRE
may prevent certain common problems from arising.

9.2 Background

The evaluation of programming toolkits, methodologies, paradigms and lan-
guages is a matter of some discussion and debate within the wider software
engineering community. For a system like ACRE, the principal aim is to make
it easier for developers to perform particular tasks. Specifically, it should fa-
cilitate developers in implementing reliable, predictable, understandable and

227

secure management of communication.

A new proposal for a method of performing this task should not impose ad-
ditional effort on the developers that use it. Examples of this include [90]
and [114], which related to models of parallel programming,

In a variety of software engineering disciplines, a notion of programmer effort
has been used in attempting to quantify the amount of work a programmer
must undertake to complete some programming task. Numerous studies have
attempted to use objective metrics to quantify programmer effort. Although
not based in the agent domain, these metrics can help inform a choice of met-
ric for AOP. Some examples include the number of non-comment, non-empty
lines of code [114] and non-commented code statements [158]. Another meas-
urement of effort is the time taken to implement a solution to a standard prob-
lem [114, 90].

When performing an evaluation such as this, a common approach is to use
two groups of participants. Each group is presented with a common problem
to solve, with all factors other than the subject of the evaluation being kept
equal [90, 114, 144].

9.3 Scenario Motivations

Following precedent set in other areas, it was decided to develop a scenario
within which experiment participants would be required to develop solu-
tions. Before the development of this scenario it was important to first identify
its desirable features. Due to the nature of ACRE, the problem must be
communication-focused. Additionally, since communication is key, it was desir-
able that the scenario should not have complex reasoning as a requirement, as
this would detract from the communicative aspect. Thus the problem should
also be accessible. The reproducibility of the experiment is also important. A
scoring system should be in place so that the participants’ goal is clearly defined.
With this in place, participants are readily aware of what is required of them.
Another important requirement was that the final score be independent from
the order in which the tasks were implemented. A clear reward for active agents
was also considered to be a necessity, so that idleness cannot result in success.
Some of these motivations are relevant to any type of MAS evaluation whereas
others are specific to the type of task that would be suitable for a system such
as ACRE.

228

• Communication-focused: As ACRE is fundamentally concerned with inter-
agent communication, it is essential that the scenario be inherently
communication-focused. As such, it was decided that the scenario
should include a number of pre-written “core agents” with which par-
ticipants’ solutions were required to interact using protocols that were
supplied. This communication was considered to be an essential com-
ponent without which it would be impossible for a participant to make
any progress.

• Accessible: The nature of the scenario should be such that it is not required
to create an agent or agents that feature complex reasoning or intelligent
behaviour. Though this motivation does not preclude the development
of smarter agents, it should not be the main driver of success as it should
be possible to succeed using simple strategies.

• Reproducible: Having decided to make core agents available for commu-
nication, it is important that their behaviour should be reproducible. This
means that any decisions they make, along with any non-deterministic
changes to the environment, must be recorded so that any experiment
can be repeated. The reason for this is twofold: 1) any experiment can
be reliably re-run in order to verify its results and 2) the performance of
multiple solutions can be compared using the same conditions.

• Clearly defined goal: It should be clear to participants what is required of
them. The tasks they are required to perform, the scoring criteria and any
time constraints should be made available at the outset. It is not neces-
sarily the case that the final score should be an accurate representation of
the quality of the solution: merely that it aids the avoidance of confusion
and ensures that each participant is working towards the same aims.

• Independence of task ordering and final score: In a scenario where a parti-
cipant is required to perform multiple tasks, no participant should be
capable of gaining an advantage merely by implementing these tasks in
a different order to his/her competitors. The easiest way to achieve this
independence is to fix the order in which the tasks must be performed. In
the context of a communication-focused evaluation, this involves ensur-
ing that later protocols are dependent on having previously implemen-
ted prerequisite protocols.

• Reward for participation: The scenario should be set up in such a way so as
to ensure that it is not possible for a participant to benefit from failing or

229

declining to implement one or more of the tasks. Where “participation”
consists of the implementation of protocols (as in this case), it should
be impossible for an agent successfully implementing any protocol to be
consequently at a disadvantage when compared to another that does not.

9.4 Scenario Description

The scenario and instructions that were presented to the participants is con-
tained in full in Appendix C (with the exception of a section detailing how
participants should submit their code: the only other changes to the original
scenario are for reasons of typesetting and formatting). The scenario that was
chosen was a simple stock and asset trading game. Each participant was re-
quired to create an agent named Player, which was capable of interacting with
a number of core agents that were provided. The Player was initially furnished
with some initial capital, manifested as a quantity of virtual money, and had
as its aim the buying and selling of virtual stocks and assets for profit, with the
goal of maximising its capital.

The core agents with which the Player could interact were as follows:

Banker: The Banker agent is responsible for recording the amount of money
each Player possesses. At the beginning of the scenario, the first task that
a Player should perform is to contact the Banker to open a bank account,
into which its initial capital is deposited in virtual currency. The Banker
can later be contacted so an agent can ascertain its bank balance.

Stockbroker: The Stockbroker agent allows the Player agent to buy and sell
virtual stocks. The primary mechanism through which a Player can earn
money is by communicating with the Stockbroker to buy stocks and later
sell them at a profit.

Guru: This agent has expert knowledge about the movements of the market,
and can provide advice to Player agents about stocks that are likely to
rise dramatically in value and also those that should be avoided. This
allows Players to gain an advantage in terms of choosing which stocks
they should buy, and when they should be sold again.

Auctioneer: In addition to stocks, a Player may also purchase properties. The
value of properties rises more quickly than stocks, making this a valuable

230

Table 9.1: Core Agent Protocols.
Agent Protocol Based On Purpose
Banker open request [74] Open a bank account

enquiry query [72] Query your bank balance
Stockbroker listing query [72] Get a list of available stocks

price query [72] Query the price of a stock
portfolio query [72] Query stocks currently owned
buy request [74] Buy a quantity/value of a stock
sell request [74] Sell a quantity/value of a stock

Guru subscribe subscribe [76] Subscribe to Guru’s stock tips
Auctioneer subscribe subscribe [76], Subscribe to new auctions and

english-auction [64] participate in them
Bidder sell contract-net [69] Sell a property

means of increasing capital. Properties are purchased by participating in
auctions conducted by the Auctioneer agent.

Bidder: In order to sell a property it has previously bought, a Player agent
must conduct its own auction to allow a number of Bidder agents to
lodge bids to buy it. There are three Bidder agents present in the system,
unlike the other types of core agent where only one instance is present.
It is possible for a Player to sell a property by communicating with only
one Bidder agent, but in order to be guaranteed to get the best price it
must consult all three Bidders.

The trading game’s features were designed with the scenario motivations in
mind. The game is heavily focused on communication, since it is necessary to
communicate with the core agents in order to succeed. A number of proto-
cols were developed that describe the types of conversations in which the core
agents are capable of participating. Each of these protocols is based on one or
more of the standard FIPA interaction protocols. These protocols are summar-
ised in Table 9.1. An illustration of the FSM describing each protocol was also
made available. An example of this is shown in Figure 9.1 (all FSMs can be
seen in Appendix C). This is the protocol that allows a Player to communicate
with the Stockbroker in order to purchase a particular quantity or value of a
specified stock.

The clearly defined goal of the scenario is for a Player to maximise capital. This
is an easily understandable concept, as is the buying and selling of assets for
profit. Thus the participants in the evaluation were clearly aware of what was
required of them.

By way of making the scenario accessible, only a single agent is required to be

231

Figure 9.1: FSM illustration of the broker.buy protocol.

developed by each participant. Additionally, this agent can achieve a reason-
able level of success using a relatively simple strategy. A typical such strategy
is to subscribe to the advice given by the Guru and follow it by investing all
available capital in the stocks it recommends, selling it when advised. Al-
though a more complex strategy may yield superior results, it is not a require-
ment for participation in the evaluation. The requirement of accessibility is
especially important when participants are subject to time constraints, as they
were in this case (see Section 9.5).

232

The movement of stock prices was, by default, random. An internal clock was
used to keep track of the time of the experiment. Stock prices may change on
every “tick” of this clock. For experiments to be reproducible, these stock move-
ments may alternatively be pre-prepared (or recorded from a previous random
run) and be loaded at the beginning of the experiment. This would ensure that
price movements are repeated across multiple runs of an experiment.

Certain aspects of the experiment were defined in such a way so as to encour-
age a particular implementation sequence. The tasks that a Player is required to
perform are designed to be conducted in a particular order. Although there
are no technical restrictions on the order in which participants choose to im-
plement their solutions, most tasks are dependent on a previous task having
already been completed. For example, it is impossible to buy stocks prior to
opening a bank account. Stocks may be not be sold before being bought, and
the advice of the Guru is also useless without a Player having the ability to act
upon it by buying and selling. The protocols for buying and selling properties
are more complex. As such, it is intended that participants would wait until
successfully engaging with the rest of the system using simpler protocols be-
fore taking part in auctions. To enforce this, the value of all properties is set
to be higher than a Player’s initial capital. Thus a Player must make a profit
on the stock market before they can take part in auctions. Finally, selling a
property to Bidders cannot occur before it has been bought. Some protocols
are for convenience and are not essential to the successful completion of tasks.
For example a Player may recalculate and remember its bank balance after
each transaction rather than using the bank.enquiry protocol to request this
information from the Banker.

The requirement to reward active agents is achieved by constraining the stock
calculation mechanism so that the price of stocks only increases. Although this
is an artificial restriction, it plays an important role in the development of the
system by ensuring that an agent that successfully implements the protocols
to buy and sell stocks must perform better than one that does not participate
at all in the hope that its initial capital will suffice.

9.5 Undergraduate Experiment

The evaluation experiment was first conducted with a group of final year un-
dergraduate students in Fudan University, Shanghai, China. This evaluation

233

was conducted as part of a module on Agent Oriented Programming. Prior to
taking this module, none of the students had previous experience developing
MASs or using an AOP language.

In this type of experiment, it is important to reduce to the greatest extent pos-
sibly any features of chosen programming languages or frameworks that may
bias the result. For this reason, all students were required to create their imple-
mentation using the AF-AgentSpeak language within the Agent Factory multi
agent framework.

The students were permitted a three hour period within which to create their
solutions. The experiment was conducted within a supervised laboratory set-
ting. The use of a fixed time period facilitates the use of quantitative com-
parisons between the speed at which each participant worked. Conducting
the experiment in class ensured that the work submitted by each student was
their own. To aid them with their task, students were permitted to access lec-
ture notes and refer to the official manuals and user guides for Agent Factory,
AF-AgentSpeak and ACRE.

The class was divided into two groups of equal size by means of random as-
signment. Participants in one group were requested to create their solution
using ACRE whereas the other group was requested to use the pre-existing
message-passing capabilities of Agent Factory.

To prepare the students for the experiment, a practical session was conducted a
week before the experiment. This allowed the students to have sufficient time
to become familiar with the technologies they were expected to use for the
experiment, including the various message exchange mechanisms. As part of
the AOP module, they had previously participated in practical sessions that
exposed them to other aspects of AF-AgentSpeak and AOP in general.

The class consisted of a total of 46 students. Therefore 23 students were asked
to create an ACRE solution, with the other 23 being requested to make their im-
plementations without the use of ACRE. For the evaluation itself, one student
from the non-ACRE group did not attend the evaluation, leaving 45 students
in total. Additionally, one other student from this non-ACRE group instead
submitted a solution using ACRE.

Of the remaining 21 students in the group not using ACRE, one submission
was excluded from this research as only a single protocol had been attempted
and this attempt had not been successful. This ultimately left 20 non-ACRE
students in total for consideration.

234

In the ACRE group, 24 submissions were received. As with the non-ACRE
group, one submission was excluded from this analysis as it had not success-
fully interacted with any core agent. Thus there are 23 submissions using
ACRE that have been used for the evaluation.

The submissions were evaluated using both objective and subjective measures.
Each submission was evaluated only on the source code that was submitted:
additional surveys were not conducted. Initially, some simple objective meas-
ures were utilised to measure the time taken and the level of programmer effort
that is required to create communication-heavy AOP programs using ACRE
when compared to doing so without ACRE. This analysis is presented in Sec-
tion 9.5.1. Following this, each implementation was examined subjectively to
identify any common problems or issues that may arise during the develop-
ment of such a solution. This is done in Section 9.5.2.

9.5.1 Objective Measures

The ACRE toolkit is intended to aid developers in dealing with complex com-
munication in an easier fashion. For this reason, it is essential to ensure that
ACRE does not add to the effort required by a programmer to develop a
MAS. Some simple objective measures are available to attempt to quantify the
concept of programmer effort. For this evaluation, two such metrics were used:
1) the number of protocols implemented within a specific time period (“num-
ber of protocols”) and 2) the number of non-comment, non-empty lines of code
written per protocol (“lines per protocol”).

The first metric can compare two participant groups in terms of the time taken
to implement protocols. Because the tasks are ordered, each participant is en-
couraged to implement the protocols in the same order, although this is not
guaranteed. A communication protocol is considered to be the unit of work
for this experiment, given that all interaction with core agents is done using
protocols, and that no work can be done without interacting with these core
agents.

With regard to counting lines of code, merely counting the lines of code con-
tained in each submission is not a useful metric, as it is affected by the overall
progress of each participant’s solution. As this is already measured by the
“number of protocols” metric, the number of lines of code is taken as an av-
erage per protocol. This gives an indication of the amount of work that is
required of a programmer to implement an interaction protocol.

235

It could be argued that a more fine-grained metric may attempt to assign lines
of code to specific protocols. Although this is obvious when considering lines
of code that specifically deal with the sending and receiving of messages, it
is more difficult when dealing with other lines of code. For example, a belief
may be adopted to record the fact that a bid has been accepted in an auction,
which may be used at a later time when deciding whether to accept bids. In
this case, the adoption of a belief does not directly relate to the sending and
receiving of messages within a conversation, but is still closely related to the
protocol implementation. A more complex example may involve the adoption
of beliefs that relate to multiple protocols, in which case assigning this to one
particular protocol may be impossible. An example of this would be if an agent
adopts a belief about a quantity of stock that it owns. This may be relevant to a
conversation where it wishes to sell this stock (a broker.sell conversation)
and also in deciding whether to respond to a “sell” recommendation from the
Guru agent (the guru.subscribe protocol). For these reasons, “lines per
protocol” is used as the metric, as this gives a general indication of the amount
of work that is required to be done per protocol implemented.

Table 9.2: Objective measures of programmer effort for Fudan students.
Protocols Implemented Lines per Protocol

ACRE 5.43 18.35
Non-ACRE 5.85 27.06

The results of this objective measurement are laid out in Table 9.2. In each
case, the metric is the average per participant in the appropriate group. For
the “protocols implemented” metric, the difference between the groups is not
statistically significant using an unpaired t-test for p = 0.05. The difference in
“lines per protocol” is, however, statistically significant using the same test.

From this table, it can be seen that there is a marginal difference between the
average number of protocols implemented within the three-hour time period.
As this difference is not significant, it indicates that the speed of developement
(in terms of protocols as units of work) is comparable whether ACRE is being
used or not. This suggests that ACRE does not impose a steep learning curve
above that of learning how to use more traditional methods of message and
conversation handling.

An interesting finding is that ACRE resulted in significantly fewer lines of code
being written per protocol implemented. Although this is a somewhat crude
metric, it does suggest that the automated conversation handling of ACRE

236

does reduce the overall amount of code that a developer is required to write in
order to implement protocols.

9.5.2 Subjective Analysis

The previous Section examines the solutions that were received in terms of
quantitative analysis. The metrics chosen attempt to measure the speed at
which participants were able to develop implementations of protocols, along
with the amount of effort involved in the creation of each implementation.
However, none of these metrics capture the quality of the code.

Capturing code quality using quantitative metrics is a very difficult task. For
this reason, the solutions submitted were examined manually so as to subject-
ively analyse each. Particular attention was paid to how complete the non-
ACRE implementations were. During this analysis, a number of common is-
sues were identified in the non-ACRE code. In some cases, these issues would
allow the agent to be exploited by another malicious agent. In other cases,
the code submitted was very closely tied to the scenario that was presented,
and would require many changes in order to be reused within a larger MAS
or in an extended scenario. In all cases, the issues that arose could not arise in
ACRE-enabled agents as a result of how ACRE is designed.

The issues identified were typically in the AF-AgentSpeak rules that handle
communication. Typically, an AF-AgentSpeak agent will contain rules that
cause some actions to be taken in specified circumstances. An AF-AgentSpeak
rule has a triggering event and a context that are used to identify these situ-
ations where the rule should fire. The triggering event is some event that has
occurred (i.e. a change in the belief base) whereas the context is a set of be-
liefs that should be present in order for the rule to be relevant. When writing
non-ACRE code in AF-AgentSpeak, the event triggering the rule is typically
the receipt of an incoming message and the context consists of beliefs about
the state of the conversation (checking that the sender of the message is as
expected, ensuring that the message is received in the correct sequence when
compared with necessary preceding messages, etc.). An example of this can be
seen in Figure 9.2. In the non-ACRE code that was received, these triggering
events and contexts were frequently written in a suboptimal way.

The specific common issues that were identified during the course of this sub-
jective analysis are as follows. Words in parentheses are short descriptions that
will be used to refer to each issue in the ensuing analysis:

237

+initialized : true <-
+openingAccount(banker),
.send(request,agentID(banker,addresses("local")),openAccount);

+message(inform,agentID(?sender,?addr), openedAccount(?id,?amt)) :
openingAccount(?sender) <-

+bankAccount;

Figure 9.2: Sample non-ACRE code.

• No Checking of Message Senders (Sender): An AF-AgentSpeak belief about
the receipt of a FIPA message includes the details of the sender of the
message. In many cases, this information was ignored, meaning that a
message triggering a rule could have been sent by any agent. Instead,
only the content and/or performative of the message were checked in
the triggering event of rules.

• No Checking of Conversation Progress (Progress): According to the scen-
ario description, every message is sent according to the rules set out in
the supplied protocols. As such, they are sent and received in a clearly
defined sequence (e.g. advice will not be sent by the Guru agent unless
the Player agent has subscribed to its updates). Many participants did
not attempt to check the context of messages to ensure that the required
earlier messages had indeed been previously exchanged. Instead, each
message was treated individually.

• Hard-coded name checking (Name): In cases where the sender of a mes-
sage was checked, it was frequently the case that the specific name of the
sender agent was hard-coded in the AF-AgentSpeak code.

• Checking addresses (Address): The addresses of core agents was also hard-
coded in some cases.

The issues identified will not prevent a Player agent from successfully parti-
cipating in the trading scenario as currently defined. However, the presence of
such issues means that additional effort is required to adapt the solution for a
more open agent system, for example if multiple Player agents were present in
the same MAS and interacting with the same core agents. In many cases, heavy
modification to existing code would also be required if the scenario were to be
extended with the addition of more protocols and/or core agents as the code
is too closely tied to the specifics of the scenario presented.

238

The Sender issue arises whenever a Player agent fails to check the identity of
the sender of a message that it has received. In certain situations this will have
unintended adverse consequences. A typical example of this issue arising is
when a Player agent reacts to a recommendation from the Guru agent to buy
a particular stock. Most implementations react to these recommendations by
buying a quantity of the specified stock. In a more open MAS, a rival malicious
Player agent could send recommendations to other agents to cause them to
buy stock that is not expected to perform well, contrary to the advice from the
real Guru agent. In the absence of a check for the expected sender, it would
be required only that the correct performative and content be present in the
message.

The failure to verify the state of a conversation also makes a Player agent
susceptible to exploitation. An example of where this may occur is in the
broker.buy protocol shown in Figure 9.1, which is used for buying stock
from the Stockbroker. The protocol insists that the Stockbroker makes a pro-
posal to the Player agent, which must be accepted before the purchase pro-
ceeds. If, however, the Player has no concept of a conversation, it may be con-
vinced that it has bought some quantity of a stock (via an inform message of
the type that leads the conversation to the “done” state), without ever having
participated in the negotiations and without having initiated the transaction.
In isolation, this issue would allow a malicious Stockbroker agent to sell stock
to a Player that it does not want. Worse, if combined with a failure to verify
the sender of messages, another Player agent could potentially convince the
agent to buy stock in which it has no interest.

As an aside, it is interesting to note that when participants did check the pro-
gress of conversations, they did so using the same state names that are in-
cluded in the ACRE FSM diagrams. This suggests that even for developers
who cannot or choose not to use ACRE, the availability of formalised proto-
cols is a useful tool for visualising and reasoning about conversations for the
developers themselves.

The two other common issues identified are of the type that cause difficulty if
the scenario is altered in any way, for example if the conversations are to be
held with different agents and/or multiple agent platforms. For agents that
did check that the sender of a message was as expected, it was frequently the
case that the name of the expected sender was hard-coded into the Player agent
code. This limits the code to being able to deal with only a single agent with a
specific name. Changing the name of a core agent would require all the rules

239

relating to its conversations to be rewritten. More seriously, the rules cannot be
reused in the situation where a second agent capable of engaging in a particu-
lar conversation is introduced (e.g. the addition of a second Stockbroker that
deals with a different stock portfolio). Existing code would require rewriting
to deal with this type of situation. In some cases, the addresses of core agents
were hard-coded also, restricting the solution to a single agent platform and a
single message transport mechanism.

The Conversation Manager of ACRE checks that the sender of a message is
a participant in the relevant conversation. It also ensures that the message is
received in the appropriate sequence by consulting the appropriate protocol
FSM. For this reason, the common issues identified in the non-ACRE code
cannot arise in code that uses ACRE. In AF-AgentSpeak code using ACRE,
the triggering event of a rule is typically that a conversation has advanced,
with the context being used to check other details about the conversation. The
participants of a conversation need only be named when the conversation is
initiated.

For a pre-existing conversation, a conversationAdvanced event can only
be triggered by a message that has been sent by an agent that is an existing
participant in the conversation, has the correct performative according to the
protocol and has content that matches the next expected message. Thus there
is no requirement on the developer of a Player agent to implement these checks
manually. If any of these criteria are not met, an unmatchedMessage event
is raised and the conversation does not advance. Thus the types of problem
identified above cannot occur in an ACRE-enabled agent.

An ACRE agent cannot be fooled by another Player agent sending messages
that should be sent by a core agent, as it is not a participant to a conversation1.
Similarly, out-of-sequence messages cannot be used to manipulate a Player
agent either. For example, a Stockbroker agent cannot inform a Player agent of
a successful purchase unless the Player has previously agreed to the purchase.

The use of ACRE thus protects an agent against these issues. This leads to more
reusable code as an extension to the scenario or a more open MAS would re-
quire far less effort to adapt the existing ACRE code to the new circumstances.
Thus ACRE can be seen to prevent certain styles of coding that inadvertently
restrict the extensibility and reusability of communication-handling code.

1ACRE does not protect against messages that are sent by an agent other than the agent
named in the sender field of the message. This form of secure communication, if required, is
considered to be a task for the underlying Message Transport Service.

240

9.5.2.1 Prevalence of Issues

For each of the issues identified during the subjective analysis of the code, it
was necessary to record how prevalent it was amongst participants. To facil-
itate meaningful analysis, each implementation was assigned one of the three
following classifications relating to each of the four issues identified:

• Not susceptible: The issue in question was not present for any rule in the
implementation.

• Totally susceptible: The issue was present in the implementation for every
rule where it could possibly be present.

• Somewhat susceptible: The issue in question was present in at least one
relevant rule, but not all rules where it could have occurred.

For Player agents that were totally susceptible to the Sender issue, they could
not possibly be affected by the Name or Address issues as they never attempted
to check the details of the sender of the message. Therefore, in the following
analysis the figures shown for these latter two issues are a percentage of those
agents where it was possible for them to arise (i.e. those Player agents that
were either somewhat susceptible or not susceptible to the Sender issue).

The prevalence of the issues identified in non-ACRE code is shown in Table 9.3
and illustrated graphically in Figure 9.3. In the Table, the figures in parentheses
are the absolute number of subjects to which the percentage relates. For the
Sender and Progress issues, these percentages are of the 20 non-ACRE solutions
considered. The Name and Address issues are out of the 12 solutions that are
not totally susceptible to the Sender issue.

Table 9.3: Issues present in Fudan students’ non-ACRE code.

Sender Progress Name Address

Totally Susceptible 40% (8) 55% (11) 67% (8) 25% (3)

Somewhat Susceptible 30% (6) 30% (6) 0% (0) 17% (2)

Not Susceptible 30% (6) 15% (3) 33% (4) 58% (7)

From these, it can be seen that the common issues identified during the subject-
ive analysis were widespread amongst the non-ACRE group. The only issue
that was found in less than half of the relevant agents was the hard-coding of
addresses.

241

Figure 9.3: Issues present in Fudan students’ non-ACRE code.

Over two thirds of agents were susceptible to reacting to messages sent by the
wrong agent at least some of the time. This issue occurred all the time in 40% of
agents, who never checked the identity of message senders. Of the agents that
did check the message sender, two thirds hard-coded the agent names directly
in their code, which would require extensive rewriting of rules if the scenario
were to be extended or if the code was to be applied in another situation.

Only three participants (15%) wrote code that always verified that messages
were received in the order specified by the underlying protocol. Further ana-
lysis found that all three of these solutions were somewhat susceptible to the
Sender issue. This means that no submissions were received that were immune
to all the issues identfied.

The identification of these issues, along with their widespread presence
amongst the solutions received is a strong argument in favour of using a
conversation-handling technology such as ACRE. The automated conversa-
tion checking and exception handling of ACRE automatically guards against
these issues and so encourages more robust and reusable code. As can be seen
from the objective metrics, this is done without adding to the programming
effort that is required of developers. Left to handle conversations themselves,
developers can fall into bad habits that adversely affect the overall quality of
their code.

242

9.6 Postgraduate Experiment

Following the evaluation experiment conducted with undergraduate students,
the same scenario was also presented to a different group of students, to in-
vestigate whether the patterns seen in the first group are more generally ap-
plicable. The second group of students were part of a part-time Masters-level
Agent Oriented Software Engineering module held in University College Dub-
lin, Ireland. Unlike the undergraduate students from the first evaluation, these
students are experienced software developers in industry, though none had
previous experience with AOP prior to taking this module.

Classes were conducted every day for five days, with students being assigned
practical work each afternoon to become familiar with AOP. Communication
handling and ACRE were introduced on the fourth day and the evaluation
was conducted on the fifth day. This meant that these participants had less
preparation for the evaluation than those in the first experiment.

As with the initial experiment, the evaluation was conducted in a laboratory
setting over a three-hour period. This again ensured that measures of pro-
grammer effort relate to the same time period for each student. Unlike that
experiment, however, the postgraduate students were permitted to submit
an updated version of their solution two weeks after the original experiment.
While these second submissions are not useful for objective measures (as the
time spent on solutions by each student is no longer constant), it is interesting
to subjectively compare the solutions submitted during the initial experiment
with those resubmitted by the same student later.

Students were again split into two groups by random assignment. In a class
of 19 students, 10 submitted ACRE-based solutions while the remaining 9 stu-
dents created non-ACRE agents.

9.6.1 Objective Analysis

The same objective metrics as for the first evaluation were also applied to this
experiment. The results of this are set out in Table 9.4. As with the Fudan stu-
dents, the ACRE group on average implemented marginally fewer protocols
in the time available. Overall, the number of protocols developed was lower
than the Fudan students for both the ACRE and non-ACRE groups. This may
have been as a result of the shorter time available to these students in which
to become familiar with ACRE and with AOP in general. With regard to the

243

number of lines of code per protocol, it can be seen that the ACRE participants
wrote a very similar amount of code to their Fudan counterparts. A dramatic
difference can be seen in the non-ACRE code, however. The UCD students
wrote substantially fewer lines of code than those in Fudan. For the UCD ex-
periment, the average number of lines per protocol in a non-ACRE solution
was less than that of an ACRE-enabled agent.

Table 9.4: Objective measures of programmer effort for UCD students.
Protocols Implemented Lines per Protocol

ACRE 4.4 18.93
Non-ACRE 4.67 14.87

For both metrics, however, the difference in the measurements was found not
to be statistically significant using an unpaired t-test for p = 0.05. This adds
weight to the argument that ACRE does not add to the amount of programmer
effort that is required to create a communication-heavy agent program.

9.6.2 Subjective Analysis

In order to be consistent with the earlier experiment in Fudan, the UCD non-
ACRE students’ code was analysed to investigate whether they were suscept-
ible to the same common issues as the undergraduate participants. Since both
groups worked in the same conditions, comparisons can be drawn between
the two groups. With the postgraduate students, further comparisons can be
made between the solutions that were submitted during the fixed-time lab ses-
sion and the improved solutions that were submitted after the students had
done further work on their code.

9.6.2.1 Prevalence of Issues

The results of the subjective analysis of the postgraduate students’ non-ACRE
code as it was after the fixed-length laboratory session can be seen in Table 9.5
and Figure 9.4.

The percentages in Table 9.5 are of the total of 9 non-ACRE students for the
Sender and Progress issues. The percentages Name and Address issues are cal-
culated from the students that were not totally susceptible to the Sender issue,
as was done for the Fudan experiment analysis. In this case, that amounts to 4
participants.

244

Table 9.5: Issues present in UCD students’ non-ACRE code in fixed time
period.

Sender Progress Name Address

Totally Susceptible 56% (5) 78% (7) 100% (4) 0% (0)

Somewhat Susceptible 0% (0) 22% (2) 0% (0) 0% (0)

Not Susceptible 44% (4) 0% (0) 0% (0) 100% (4)

Figure 9.4: Issues present in UCD students’ non-ACRE code in fixed time
period.

A significant difference between these results and those for Fudan is that no
UCD student hard-coded addresses when checking message senders. Of in-
terest, however, is that several students hard-coded addresses for some outgo-
ing messages. This was not a feature of the Fudan submissions.

As with the Fudan submissions, no solution was submitted that was immune
from all of the common issues. Over half of participants failed to ever check
the sender of incoming messages. When this check was performed, it was al-
ways in the form of a hard-coded agent name. For the Progress issue, almost
a quarter of participants made some attempt to check that messages were be-
ing received in the intended sequence, however none of the solutions were
successful in doing this every time it was appropriate.

An extension to this analysis is to compare the time-constrained solutions that
were initially submitted with the final submissions made a few weeks later.

245

Table 9.6: Issues present in UCD students’ non-ACRE code without time re-
striction.

Sender Progress Name Address

Totally Susceptible 56% (5) 56% (5) 75% (3) 0% (0)

Somewhat Susceptible 11% (1) 44% (4) 25% (1) 0% (0)

Not Susceptible 33% (3) 0% (0) 0% (0) 100% (4)

Figure 9.5: Issues present in UCD students’ non-ACRE code without time re-
striction.

Although it is difficult to draw reliable conclusions from such a relatively small
sample size, it is interesting to examine the differences between the two sets
of results. These final submissions were analysed in the same way, with the
results being presented in Table 9.6 and Figure 9.5. The calculations here are
done in the same way as for the previous experiments.

The observations taken here can be directly compared with the previous UCD
experiment as the solutions were implemented by the same students. With
regard to the Sender issue, it is interesting to note that one student who had
previously not been susceptible to the issue introduced a bug into the code
after the initial submission. This caused one submission to be moved to the
“somewhat susceptible” category.

For the Progress issue, an improvement was observed in the later submissions.
In one case, a protocol that had been implemented after the original submis-

246

sion included checks to ensure the conversation progressed correctly. In the
other case, a check was introduced in exactly one place, where a belief that
triggered the purchase or sale of stock was required to be still present at the
end.

The other change was in the Name issue, where one student who had previ-
ously hard-coded all names implemented a protocol where this was not done.
The protocol in question was the bidder.sell protocol, which requires the
Player agent to interact with three Bidder agents. It is because the same con-
versation can be conducted with more than a single core agent that this check
was left more generic. Thus it does not appear to reflect any particular change
in approach from the participant.

Thus an interesting observation about these later submissions is that code writ-
ten after the initial experiment did not show any consistent improvement in
terms of susceptibility to common issues. Although it must be noted that the
sample size is small, this suggests that the problems noted with the code sub-
mitted after the initial experiment is unlikely to be solely attributable to the
fact that participants were subject to time constraints.

9.7 Wider Applicability of Issues

Having identified a number of problems that may arise in code written
without the use of ACRE conversation handling, it is important to consider
whether other features of the programming environment may have caused
this to happen. The findings of this experiment would not be convincing if
the issues were found to be applicable only to the Agent Factory framework
and/or its implementation of AF-AgentSpeak.

For this reason, it is desirable to demonstrate that a system such as ACRE has
wider benefits than to one single framework or configuration. To this end, an
alternative framework that also lacks built-in conversation and protocol man-
agement was sought. In particular, best-practice communication code was de-
sirable, so that any issues identified could not be attributed to poor program-
ming practice or a lack of familiarity with the full capabilities of the platform
or language.

Jason is a MAS development platform that uses an extended version of Agent-
Speak(L) as its AOP language [20]. It supports communication between agents
via KQML-like messages. As with the pre-existing version of Agent Factory

247

used for evaluation, it also lacks any built-in support for conversation hand-
ling or the definition of interaction protocols. There are two principal reasons
for choosing Jason for this analysis. Firstly, it is a popular platform that is
well-known and well-established within the AOP community. Secondly, the
developers of Jason have released a book that includes sample code for per-
forming a variety of tasks, including inter-agent communication [20]. As this
code is written by the developers of the framework themselves, it can be as-
sumed that this represents recommended best-practice in the area of commu-
nicating between agents in Jason.

1 @lc1[atomic]
2 +!contract(CNPId) : cnp_state(CNPId,propose) <-
3 -+cnp_state(CNPId,contract);
4 .findall(offer(O,A),propose(CNPId,O)[source(A)],L);
5 .print("Offers are ",L);
6 L \== []; // constraint the plan execution to at least one offer
7 .min(L,offer(WOf,WAg)); // sort offers, the first is the best
8 .print("Winner is ",WAg," with ",WOf);
9 !announce_result(CNPId,L,WAg);

10 -+cnp_state(Id,finished).

Figure 9.6: Sample Jason rule forming part of an implementation for Contract
Net protocol.

Figure 9.6 is an extract from an implementation of a contract net interaction
protocol for Jason [20, p. 134]. This implementation is provided by the de-
velopers of the Jason framework to show how a conversation might be imple-
mented for that platform using AgentSpeak. The extract chosen shows a plan
that makes up part of the program of the agent that initiates and coordinates
the contract net. This particular section is intended to be invoked whenever
all bids have been received, so as to identify the winner (line 7) and create an
intention to announce this result to all the participants in the contract net (line
9).

The MAS within which this agent is intended to run is a fixed set of agents that
each has a particular purpose. Specifically, all other agents in the system are
intended to be participants in the contract net (three submit bids when called
upon to do so, one refuses to participate and one is designed not to respond).
As such, the code does not cater for proposals being received from agents that
were not party to the original call for proposals. This can be seen in line 4
of the extract, which creates a list of offers that have been received based on
any proposal received from any source, regardless of whether they had been

248

invited to participate or not. This is an example of the Sender issue that was
identified in the ACRE evaluation. If this code were to be re-used for a more
open MAS, the code would require modification to ensure that only agents
that are expected to do so will submit proposals. Related to this is a method
named SocAcc (meaning “socially acceptable”) that is provided by Jason to
ensure that some types of messages will not be processed if they were sent by
inappropriate agents. Although this can be used to prevent non-participating
agents from sending proposals, once an agent has been given permission to
send proposals it cannot be prevented from participating in any contract net.

The extract also illustrates that a Jason agent can also be susceptible to the
Progress issue. Here, a belief named cnp state is used to track the state of
the conversation. The code in question is written by experts and as such this
belief is present in many plans so the state of the contract net is known at all
times. However, as our evaluation has shown, less experienced programmers
are more prone to omitting this type of check. Even experienced programmers
who do not use agents can make this type of error when switching from their
preferred programming paradigm, as the UCD evaluation illustrated.

One further issue arises in the choice of a name to uniquely identify a conver-
sation. In the extract shown, this is referred to as the CNPId variable. In the
Jason program, the value of this identifier is manually specified in the initial in-
tention that originally triggers the start of the contract net (not shown). ACRE
automatically generates identifiers for conversations, meaning that an agent
programmer is not required to be concerned with this aspect of conversation
handling.

9.8 Summary

To gauge the effectiveness and usefulness of ACRE, two user evaluations were
conducted. One of these was conducted by final year undergraduate students
in Fudan University, Shanghai, China. The other was done with postgraduate
students in University College Dublin, Ireland. The latter group were pro-
fessional software developers in industry, albeit none had prior experience of
developing Agent-Oriented software.

In preparation for these evaluations, a scenario was developed whereby a par-
ticipant was required to write an agent to perform a particular task. To achieve
this task, it was necessary to engage in communication with a number of core

249

agents, which were supplied. The scenario was designed to focus on commu-
nication but without requiring complex reasoning to be successful.

Each class of participants was divided into two groups, both of which used the
AF-AgentSpeak AOP language on the Agent Factory framework. In each case,
one group was required to develop their solution using ACRE and the other
was required to do without. So that meaningful quantitative analysis could be
conducted, participants were given a fixed time period within which to create
their solutions. Two quantitative metrics were used: the number of protocols
implemented was used as a measure of progress while the number of lines of
code written per protocol was used to measure the programmer effort. For the
first metric, no statistically significant difference was found between the ACRE
and non-ACRE group for either class. In the latter metric, the ACRE students
in Fudan wrote significantly fewer lines of code per protocol implemented,
though the difference was not significant in UCD. These measurements sup-
port the argument that ACRE does not cause developers to spent more time or
effort on implementing communication-heavy MASs than a system developed
without the use of ACRE.

Following this objective evaluation, subjective analysis was conducted on the
submitted code to identify common problems and issues in non-ACRE code
of the type that cannot occur in ACRE code. These issues had two key con-
sequences. Firstly, a susceptible agent could be persuaded by a malicious agent
to perform tasks it did not intend to perform. Secondly, many solutions were
too closely tied to the specific scenario presented and an extension to the scen-
ario in terms of additional agents or platforms would require re-writing of
existing rules to handle the extended scenario. This would have a negative
impact on code reuse. Although participants were not explicitly required to
write solutions that were optimal with regard to extensibility and reusability,
these findings still represent strong evidence that these problems will com-
monly arise unless due care is taken to avoid them. Between the two classes,
no non-ACRE programmer’s code was completely immune to the issues iden-
tified.

Following the evaluation, a parallel was drawn with the Jason agent frame-
work, for which code is available that was written by experts (the developers
of the system) to implement a similar type of communication-focused agent.
The analysis done on this code indicated that the issues identified in the eval-
uation experiments above are not specific to Agent Factory and can be found
elsewhere if automated conversation-handling capabilities are not present,

250

such as in Jason. Although capable and diligent programmers may still write
robust and reusable code, the presence of a system such as ACRE aids de-
velopers in avoiding the pitfalls that have been identified during the evalu-
ation process.

251

CHAPTER

TEN

Conclusions and Further Work

10.1 Introduction

This final Chapter concludes the thesis by firstly discussing possible avenues
for further work to extend that presented in the preceding Chapters. This is
done in Section 10.2. Following this, Section 10.3 presents some concluding
remarks, with particular focus on how the objectives of the thesis have been
met.

10.2 Further Work

There are many ways in which the work presented in this thesis may be built
upon. This Section briefly discusses a number of such avenues, though this is
by no means an exhaustive list.

Improved Inheritance: The present implementation of inheritance within
protocols is relatively simple, allowing only for single inheritance where
one protocol is, in effect, copied directly into another so that its states can
be referred to within the importing protocol. Allowing for multiple in-
heritance in this way increases the possibilities of duplicate state names.
For this to be a useful feature, the referencing of states both by the state
name and its containing protocol name would be permissible. An addi-
tional extension allowing two states in different imported protocols to be
marked as equivalent may also be useful. An further extension would be
to allow the same protocol to be imported twice by defining an alias for
each instance within the larger protocol.

Code Generation: Currently, ACRE provides the capabilities necessary for

252

agent developers to implement conversation-based communications.
However, all the code is still written by the developers themselves. From
a given protocol definition, an interesting extension would be to auto-
matically generate skeleton AOP code that a developer would extend to
fully implement the domain-specific aspects of the protocol. A further
extension becomes possible as inheritance increasingly becomes a fea-
ture of AOP languages. Libraries of standard protocol implementations
could be made available, containing hooks for domain-specific code to be
integrated into the conversation. An example of this would be in a pro-
tocol that contains a request for action, followed by a reply to state that
either the action has been done or that the recipient of the request has re-
fused to comply. A hook into this conversation could result in the receipt
of the request generating a goal to decide whether or not to perform the
requested action and respond accordingly.

Compatibility with other Conversation Models: At present, ACRE is not
directly compatible with other models of conversations that differ from
ACRE’s Finite State Machine (FSM) representation. However, an inter-
esting avenue of research would be to investigate the compatibility of
FSMs with other representations. For instance, recent work on the integ-
ration of global session types (as discussed in Section 3.3.5) has shown
promise. Translating ACRE FSMs into global session types and vice-
versa would improve interoperability between diverse platforms.

Improved Debugging: The definition of ACRE protocols as centralised en-
tities has advantages from the point of view of run-time debugging and
monitoring. A tool similar to the Sniffer Agent shipped with JADE that
is capable of intercepting and reading messages within a MAS could be
equipped with ACRE capabilities in order to provide a centralised view
of all the interaction occurring within the MAS.

Integration with Other Frameworks: To date, a concrete implementation of
ACRE within the Agent Factory framework has been created. However,
as ACRE’s abstract architecture has been designed to be as framework-
independent as possible, further integrations with other systems are also
possible.

253

10.3 Conclusions

This thesis has presented a comprehensive discussion of the Agent Conver-
sation Reasoning Engine (ACRE). The objectives of this work were originally
outlined in Section 1.4. This Section discusses how these have been achieved.

A holistic view of conversation management has been presented. This has
been achieved in a number of stages:

• The formal operational semantics that were contained in Chapter 6 mean
that ACRE is not tied to one particular implementation language. Any
developer, following these semantics, can create a consistent implement-
ation in any language of their choosing.

• Chapter 7 proposed an abstract architecture that has been designed with
minimal assumptions so as to be integrable with many MAS frameworks.

• A reference implementation was created using the Java programming
language that integrates with the Agent Factory MAS framework. Java
was chosen as it is the most popular base language upon which to build
MAS toolkits and frameworks. As such, much of the work done in creat-
ing this reference implementation can be directly reused in integrations
with other frameworks. This work was presented in Chapter 8.

• To aid in the adoption of the type of conversation management provided
by ACRE, tool support has also been provided. This includes graphical
programs to allow for the creation and editing of agent protocols, the
management of protocols in repositories and, for Agent Factory, a plugin
to the framework’s native debugger to allow a developer to view the
interaction between agents in a structured and informative manner.

The evaluation of ACRE was presented in Chapter 9. This indicated that the
adoption of a system like ACRE does not add to the workload required to cre-
ate a communication-centric MAS. In addition, subjective analysis of the code
that participants in the evaluation created demonstrated a number of com-
mon pitfalls that can adversely affect the security, predictability and reliability
of a solution created without the use of ACRE’s conversation management.
This evaluation was conducted using a testbed that was heavily focussed on
communication between the agents in the system. Participants undertaking
the same programming tasks using different implementation technologies is a

254

common approach in the software engineering community. This work applies
this to the agents domain.

The ability of agents to share common definitions of protocols is facilitated
through a standard XML format, which is discussed in Chapter 7 and sup-
plied in full in Appendix B. Along with the provision of graphical tools to
create and manage these descriptions, this facilitates the adoption of this type
of shared protocol independently of any particular AOP language or frame-
work. Even in cases where conversation management is not a feature of the
AOP language used, such protocol definitions can still be utilised as a form
of Application Programming Interface to aid communication between the de-
velopers themselves.

Finally, the last requirement of the core contributions outlined in Section 1.4
was that certain restrictions were followed in the design of the system so as to
aid greater compatibility:

• The definition of protocols was centralised (as defined in the XML doc-
uments) so that a single view of the progress of conversations can be
maintained. This is in contrast to some previous approaches (discussed
in Chapter 3) that maintained separate definitions for the various parti-
cipants in an interaction.

• In designing the generic architecture discussed in Chapter 7, very few as-
sumptions were made about the capabilities of frameworks within which
ACRE could be integrated. The assumptions that are made are as fol-
lows:

◦ Some mechanism exists whereby an ACRE implementation can ac-
cess the incoming messages of an agent;

◦ The framework contains some message-sending service that ACRE
can use to send messages; and

◦ Agents can use some action to interact with ACRE in the sending of
messages.

In terms of language requirements, ACRE does not rely on any partic-
ular implementation of communication semantics to be present. These
semantics can be used in a complimentary manner to the conversation
management if they are present.

• Although ACRE makes use of the conversation management aspects of
FIPA-ACL (discussed in Chapter 4), it is not dependent on these being

255

used. Thus ACRE can still be used by agents that communicate with
others that do not feature conversation management, as the matching
of messages to conversations is performed on the fly, according to the
definitions of the underlying protocols being used.

256

BIBLIOGRAPHY

[1] T. Agerwala. Putting Petri Nets to work. Computer, 12(12):85–94, 1979.

[2] J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski.
LUPS- A language for updating logic programs. Artificial Intelligence,
138(1-2):87–116, 2002.

[3] D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic Generation of
Self-Monitoring MASs from Multiparty Global Session Types in Jason. In
Proceedings of Declarative Agent Languages and Technologies (DALT 2012),
pages 1–17, Valencia, Spain, 2012.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50–58, Jan. 2012.

[5] J. L. Austin. How to do things with words. Oxford University Press, Lon-
don, 1962.

[6] R. Backhouse and D. Michaelis. Exercises in Quantifier Manipulation. In
T. Uustalu, editor, Mathematics of Program Construction, volume 4014 of
Lecture Notes in Computer Science, pages 69–81. Springer Berlin / Heidel-
berg, 4014 edition, 2006.

[7] M. Barbuceanu and M. S. Fox. COOL: A language for describing co-
ordination in multi agent systems. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), pages 17–24, 1995.

[8] M. Barbuceanu and M. S. Fox. Integrating communicative action, con-
versations and decision theory to coordinate agents. In Autonomous
Agents 1997, pages 47–58, 1997.

257

[9] M. Barbuceanu and W.-k. Lo. Conversation Oriented Programming for
Agent Interaction. Issues in Agent Communication, 1916:220–234, 2000.

[10] B. Bauer, J. Müller, and J. Odell. Agent UML: A Formalism for Specify-
ing Multiagent Software Systems. Int. Journal of Software Engineering and
Knowledge Engineering, 11(3):207–230, 2001.

[11] T. Behrens, K. V. Hindriks, R. H. Bordini, L. Braubach, M. Dastani, J. Dix,
J. F. Hübner, and A. Pokahr. An Interface for Agent-Environment In-
teraction. Proceedings of the 8th International Workshop on Programming
Multi-Agent Systems (ProMAS 2010), 2010.

[12] F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Sys-
tems with JADE. Wiley, 2007.

[13] F. Bellifemine, G. Caire, T. Trucco, and G. Rimass. Jade Programmer’s
Guide, 2007.

[14] F. Bellifemine, G. Caire, T. Trucco, and G. Rimassa. JADE Programmer’s
Guide (JADE 4.0), 2010.

[15] F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A FIPA-compliant
agent framework. In Proceedings of the 4th International Conference on
the Practical Applications of Agents and Multi-Agent Systems (PAAM-99),
volume 99, pages 97–108, London, UK, 1999.

[16] M. Ben-Ari. Principles of concurrent and distributed programming. Addison-
Wesley, second edi edition, 2006.

[17] F. Berman, G. Fox, and T. Hey. Grid Computing: Making the Global Infra-
structure a Reality. Wiley, 2003.

[18] R. H. Bordini, M. Dastani, and M. Winikoff. Current Issues in Multi-
Agent Systems Development. In G. M. P. O’Hare, A. Ricci, M. J. O’Grady,
and O. Dikenelli, editors, Proceedings of the 7th International Workshop on
Engineering Societies in the Agents World (ESAW 2006), volume 4457 of
Lecture Notes in Computer Science, pages 38–61, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[19] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece
of agent-oriented programming. Multi-Agent Programming, 15(2):3–37,
2005.

258

[20] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent
systems in AgentSpeak using Jason. Wiley-Interscience, 2007.

[21] A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. M. F. Sadri,
K. Stathis, G. Terrini, and F. Toni. The KGP model of agency for
global computing: Computational model and prototype implementa-
tion. Global computing, pages 340–367, 2005.

[22] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley. KAoS: Toward
an industrial-strength open agent architecture. Software Agents, pages
375–418, 1997.

[23] M. E. Bratman. Intention, plans, and practical reason. Harvard University
Press, Cambridge, Massachusetts, 1987.

[24] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A short overview.
In Net. ObjectDays, volume 2004, pages 195–207, 2004.

[25] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK Intelligent
Agents - Components for Intelligent Agents in Java. AgentLink News
Letter, 2(1):2–5, 1999.

[26] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In Proceedings of the 16th
European Symposium on Programming (ESOP’07), pages 2–17, Braga, Por-
tugal, 2007.

[27] C. Castelfranchi. Guarantees for autonomy in cognitive agent architec-
ture. Intelligent Agents, pages 56–70, 1995.

[28] D. Chauhan and A. D. Baker. Developing coherent multiagent systems
using JAFMAS. Proceedings of the International Conference on Multi Agent
Systems, pages 407–408, 1998.

[29] A. K. Chopra and M. P. Singh. Constitutive interoperability. In Pro-
ceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 2, pages 797–804. International Foundation for
Autonomous Agents and Multiagent Systems, 2008.

[30] D. Chu and K. L. Clark. IC-Prolog II: A multi-threaded Prolog system.
In ICLP’93 Workshop on Concurrent and Parallel Implementations of Logic
Programming Systems, pages 17–34, 1994.

259

[31] K. L. Clark and F. G. McCabe. Go! - A multi-paradigm programming
language for implementing multi-threaded agents. Annals of Mathematics
and Artificial Intelligence, 41(2):171–206, 2004.

[32] N. Clynch and R. W. Collier. SADAAM : Software Agent Development
An Agile Methodology. In In Proceedings of the Workshop of LAnguages,
methodologies and Development tools for multi-agent systemS (LADS’007),
Durham, UK, 2007.

[33] S. Coffey and K. Clark. A hybrid, teleo-reactive architecture for robot
control. In Multi-Agent Robotic Systems, 3rd International Conference on
Informatics in Control, Automation and Robotics, 2006.

[34] R. W. Collier. Agent Factory: A Framework for the Engineering of Agent-
Oriented Applications. Phd thesis, University College Dublin, 2001.

[35] R. W. Collier and G. M. P. O’Hare. Modeling and Programming with
Commitment Rules in Agent Factory. In G. Giurca and Taveter, editors,
Handbook of Research on Emerging Rule-Based Languages and Technologies:
Open Solutions and Approaches. IGI Publishing, 2009.

[36] R. W. Collier, G. M. P. O’Hare, T. Lowen, and C. Rooney. Beyond Pro-
totyping in the Factory of Agents. In Multi-Agent Systems and Applica-
tion III: 3rd International Central and Eastern European Conference on Multi-
Agent Systems (CEEMAS 2003), Prague, Czech Republic, 2003.

[37] R. W. Collier, R. Ross, and G. M. P. O’Hare. A Role-Based Approach
to Reuse in Agent-Oriented Programming. In AAAI Fall Symposium on
Roles, an Interdisciplinary Perspective (Roles 2005), Arlington, VA, USA,
2005.

[38] M. Cossentino and C. Potts. A CASE tool supported methodology for
the design of multi-agent systems. In Proceedings of the 2002 International
Conference on Software Engineering Research and Practice (SERP’02), Las
Vegas, NV, USA, 2002. Citeseer.

[39] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent con-
versations with colored petri nets. In In: Workshop on Specifying and Imple-
menting Conversation Policies, Third International Conference on Autonom-
ous Agents (Agents ’99), Seattle, pages 59–66, 1999.

260

[40] R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using colored petri
nets for conversation modeling. Issues in Agent Communication, pages
178–192, 2000.

[41] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield,
and A. Boughannam. Jackal: a Java-based Tool for Agent Development.
In Working Papers of the AAAI-98 Workshop on Software Tools for Developing
Agents. AAAI Press, 1998.

[42] M. Dastani. 2APL: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[43] M. Dastani, M. B. van Riemsdijk, and J.-J. Meyer. Programming Multi-
Agent Systems in 3APL. Multi-Agent Programming, pages 39–67, 2005.

[44] F. S. de Boer, K. V. Hindriks, W. van der Hoek, and J.-J. C. Meyer. A
verification framework for agent programming with declarative goals.
Journal of Applied Logic, 5(2):277–302, June 2007.

[45] G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concur-
rent programming language based on the situation calculus. Artificial
Intelligence, 121(1-2):109–169, Aug. 2000.

[46] G. De Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardina. IndiGo-
log : A High-Level Programming Language for Embedded Reasoning
Agents. Multi-Agent Programming, pages 31–72, 2009.

[47] M. Dinkloh and J. Nimis. A Tool for Integrated Design and Implement-
ation of Conversations in Multiagent Systems. Programming Multi-Agent
Systems, pages 187–200, 2004.

[48] M. D’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specific-
ation of dMARS. In Intelligent Agents IV Agent Theories, Architectures and
Languages, (ATAL ’97), pages 155–176, 1997.

[49] M. D’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge.
The dMARS Architecture: A Specification of the Distributed Multi-
Agent Reasoning System. Autonomous Agents and Multi-Agent Systems,
9(1):1387–2532, 2004.

[50] D. Doan Van Bien, D. Lillis, and R. W. Collier. Space-Time Diagram
Generation for Profiling Multi Agent Systems. In Proceedings of the 7th
International Workshop on PROgramming Multi-Agent Systems (PROMAS

261

2009), held at the 8th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2009), Budapest, Hungary, May 2009.

[51] D. Doan Van Bien, D. Lillis, and R. W. Collier. Call Graph Profiling
for Multi Agent Systems. In M. Dastani, A. El Fallah Segrouchni, J. a.
Leite, and P. Torroni, editors, Languages, Methodologies, and Development
Tools for Multi-Agent Systems, LADS ’009 Post-Proceedings, pages 153–167.
Springer Berlin / Heidelberg, Sept. 2010.

[52] M. Dragone, D. Lillis, R. W. Collier, and G. M. P. O’Hare. SoSAA: A
Framework for Integrating Components and Agents. In Proceedings of
the 24th Annual Symposium on Applied Computing (ACM SAC 2009), Spe-
cial Track on Agent-Oriented Programming, Systems, Languages, and Applic-
ations, Honolulu, Hawaii, USA, Mar. 2009.

[53] L. Ehrler and S. Cranefield. Executing agent UML diagrams. In Third In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004) Volume 2, volume 2, pages 903–913, 2004.

[54] A. El Fallah-Seghrouchni and A. Suna. An unified framework for pro-
gramming autonomous, intelligent and mobile agents. In Multi-Agent
Systems and Applications III, pages 353–362. Springer, 2003.

[55] European Space Agency. Robotic Exploration Technology Plan Pro-
gramme of Work 2009-2014, 2011.

[56] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool
for collaborative ontology construction. International Journal of Human-
Computers Studies, 46(6):707–727, 1997.

[57] J. Fenn and M. Raskino. Mastering the Hype Cycle: How to Choose the Right
Innovation at the Right Time. Harvard Business Press, 2008.

[58] M. Fisher. Towards a semantics for concurrent MetateM. In Executable
Modal and Termporal Logics, pages 86–102. Springer, 1995.

[59] M. Fisher. METATEM: The story so far. In Proceedings of the third inter-
national workshop on programming multi-agent systems (ProMAS-05), pages
3–22, 2006.

[60] M. Fisher and M. Wooldridge. On the formal specification and verifica-
tion of multi-agent systems. International Journal of Intelligent and Cooper-
ative Information Systems, 6(1):37–65, 1997.

262

[61] N. Fornara and M. Colombetti. A commitment-based approach to agent
communication. Applied Artificial Intelligence, 18(9-10):853–866, 2004.

[62] Foundation for Intelligent Physical Agents. FIPA Agent Message Trans-
port Service Specification, 200.

[63] Foundation for Intelligent Physical Agents. FIPA Dutch Auction Inter-
action Protocol Specification, 2001.

[64] Foundation for Intelligent Physical Agents. FIPA English Auction Inter-
action Protocol Specification, 2001.

[65] Foundation for Intelligent Physical Agents. FIPA Abstract Architecture
Specification, 2002.

[66] Foundation for Intelligent Physical Agents. FIPA ACL Message Struc-
ture Specification, 2002.

[67] Foundation for Intelligent Physical Agents. FIPA Brokering Interaction
Protocol Specification, 2002.

[68] Foundation for Intelligent Physical Agents. FIPA Communicative Act
Library Specification, 2002.

[69] Foundation For Intelligent Physical Agents. FIPA Contract Net Interac-
tion Protocol Specification, 2002.

[70] Foundation for Intelligent Physical Agents. FIPA Iterated Contract Net
Interaction Protocol Specification, 2002.

[71] Foundation for Intelligent Physical Agents. FIPA Propose Interaction
Protocol Specification, 2002.

[72] Foundation for Intelligent Physical Agents. FIPA Query Interaction Pro-
tocol Specification, 2002.

[73] Foundation for Intelligent Physical Agents. FIPA Recruiting Interaction
Protocol Specification, 2002.

[74] Foundation for Intelligent Physical Agents. FIPA Request Interaction
Protocol Specification, 2002.

[75] Foundation for Intelligent Physical Agents. FIPA Request When Interac-
tion Protocol Specificaion, 2002.

263

[76] Foundation for Intelligent Physical Agents. FIPA Subscribe Interaction
Protocol Specification, 2002.

[77] Foundation for Intelligent Physical Agents. FIPA Agent Management
Specification, 2004.

[78] S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A Tax-
onomy for Autonomous Agents. In Proceedings of the Third International
Workshop on Agent Theories, Architectures and Languages, pages 193–206,
Budapest, Hungary, 1996. Springer.

[79] M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Ver-
sion 3.0 Reference Manual. Technical Report January, Computer Science
Department, Stanford University Palo Alto, CA, 1992.

[80] M. R. Genesereth and S. P. Ketchpel. Software Agents. Communications
of the ACM, 37(7):48–53, 1994.

[81] M. P. Georgeff and A. L. Lansky. Reactive Reasoning and Planning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-
87), pages 677–682, Seattle, WA, 1987.

[82] R. Goodwin. Formalizing Properties of Agents. Journal of Logic and Com-
putation, 5(6):763–781, 1995.

[83] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, third edit edition, 2005.

[84] C. Guilfoyle and E. Warner. Intelligent agents: The new revolution in soft-
ware. Ovum, 1994.

[85] O. Gutknecht and J. Ferber. MadKit : A generic multi-agent platform.
In Proceedings of the 4th International Conference on Autonomous Agents
(Agents’00), pages 78–79, Barcelona, 2000.

[86] K. V. Hindriks, F. S. de Boer, W. Van Der Hoek, and J.-J. C. Meyer. Agent
Programming in 3APL. Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[87] K. V. Hindriks and M. B. van Riemsdijk. A computational semantics for
communicating rational agents based on mental models. In Programming
Multi-Agent Systems: 7th International Workshop, Promas 2009, Revised Se-
lected Papers, pages 31–48, Budapest, Hungary, 2010. Springer.

264

[88] K. V. Hindriks, M. B. van Riemsdijk, and C. M. Jonker. An Empir-
ical Study of Patterns in Agent Programs: An Unreal Tournament Case
Study in GOAL. Principles and Practice of Multi-Agent Systems, pages 196–
211, 2012.

[89] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[90] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert. A pilot study to com-
pare programming effort for two parallel programming models. Journal
of Systems and Software, 81(11):1920–1930, 2008.

[91] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous ses-
sion types. ACM SIGPLAN Notices, 43(1):273–284, 2008.

[92] P. C. Janca. Pragmatic application of information agents, 1995.

[93] N. R. Jennings. On agent-based software engineering. Artificial Intelli-
gence, 117(2):277–296, 2000.

[94] N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent
Research and Development. Autonomous agents and multi-agent systems,
1(1):7–38, 1998.

[95] N. R. Jennings and M. Wooldridge. Applications of intelligent agents.
Agent technology: Foundations, applications and markets, pages 3–28, 1998.

[96] H. R. Jordan and R. W. Collier. Evaluating Agent-Oriented Programs :
Towards Multi-paradigm Metrics. In In Proceedings of the 8th International
Workshop on PROgramming Multi-Agent Systems (PROMAS 2010)2, pages
63–78, 2010.

[97] H. R. Jordan, S. E. Russell, G. M. P. O’Hare, and R. W. Collier. Reuse by
Inheritance in Agent Programming Languages. In In Proceedings of the
Third International Workshop on Multi-Agent Systems Technology and Se-
mantics (MASTS 2011), 2011.

[98] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP Model
of Agency. In Proceedings of the 16th European Conference on Artificial In-
telligence (ECAI-2004), pages 33–37, 2004.

[99] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.
Computer, 36:41–50, 2003.

265

[100] K. Kuwabara, T. Ishida, and N. Osato. AgenTalk: Coordination protocol
description for multi-agent systems. Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS ’95), 1995.

[101] K. Kuwabara, T. Ishida, and N. Osato. AgenTalk: describing multiagent
coordination protocols with inheritance. In Proceedings of 7th IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI’95), pages
460–465. IEEE Comput. Soc. Press, 1995.

[102] Y. Labrou. Standardizing agent communication. Multi-Agents Systems
and Applications (Advanced Course on Artificial Intelligence), pages 74–97,
2001.

[103] Y. Labrou and T. Finin. A semantics approach for KQML - a general
purpose communication language for software agents. Proceedings of the
Third International Conference on Information and Knowledge Management,
page 455, 1994.

[104] Y. Labrou and T. Finin. Semantics and conversations for an agent com-
munication language. In M. N. Huhns and M. P. Singh, editors, Readings
in Agents, pages 235–242. Morgan Kaufmann, San Francisco, 1998.

[105] Y. Labrou, T. Finin, and Y. Peng. Agent Communication Languages: The
Current Landscape. IEEE Intelligent Systems, 14:45–52, 1999.

[106] J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic
logic programming. In Proceedings of the CL-2000 Workshop on Computa-
tional Logic in Multi-Agent Systems (CLIMA ’00), pages 17–26, 2000.

[107] J. a. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA - A Dy-
namic Logic Programming Agent Architecture. In Pre-proceedings of the
Eighth International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-2001), pages 133–145, 2001.

[108] Y. Lespérance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl.
Foundations of a Logical Approach to Agent Programming. In Working
notes of the IJCAI-95 Workshop on Agent Theories, Architectures and Lan-
guages, Montreal, Canada, 1995.

[109] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and B. Scherl, Richard.
Golog: A Logic Programming Language for Dynamic Domains. Journal
of Logic Programming, 20(1):1–25, 1994.

266

[110] D. Lillis, R. W. Collier, M. Dragone, and G. M. P. O’Hare. An Agent-
Based Approach to Component Management. In Proceedings of the 8th
International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-09), Budapest, Hungary, May 2009.

[111] D. Lillis, R. W. Collier, F. Toolan, and J. Dunnion. Evaluating Com-
munication Strategies in a Multi Agent Information Retrieval System.
In Proceedings of the 5th European Workshop on Multi-Agent Systems (EU-
MAS{’}07), Hammamet, Tunisia, Dec. 2007.

[112] J. Lind. Iterative software engineering for multiagent systems: the
MASSIVE method. Lecture Notes in Computer Science, 1994, 2001.

[113] M. Luck, P. McBurney, and C. Preist. A manifesto for agent technology:
Towards next generation computing. Autonomous Agents and Multi-
Agent Systems, 9(3):203–252, 2004.

[114] M. Luff. Empirically Investigating Parallel Programming Paradigms :
A Null Result. In Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU), pages 43–49, 2009.

[115] B. MacNamee. Agent Based Modeling in Computer Graphics and
Games Agent Based Modeling in Computer Graphics and Games. In
R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science.
Springer, 2009.

[116] P. Maes. Artificial life meets entertainment: lifelike autonomous agents.
Communications of the ACM, 38(11):108–114, Nov. 1995.

[117] F. G. McCabe. Logic and Objects. Prentice Hall, 1992.

[118] F. G. McCabe and K. L. Clark. April - Agent PRocess Interaction Lan-
guage. Intelligent Agents, pages 324–340, 1995.

[119] S. Moore. On conversation policies and the need for exceptions. Issues
in agent communication, pages 144–159, 2000.

[120] C. Muldoon. An Agent Framework for Ubiquitous Services. PhD thesis,
University College Dublin, Ireland, 2008.

[121] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady. Towards
Pervasive Intelligence : Reflections on the Evolution of the Agent Fact-
ory Framework. In A. El Fallah Seghrouchni, J. Dix, M. Dastani, and

267

R. H. Bordini, editors, Multi-Agent Programming: Languages, Platforms
and Applications and Applications, chapter 6, pages 187–212. Springer US,
Boston, MA, 2009.

[122] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. R.
Swartout. Enabling technology for knowledge sharing. AI magazine,
12(3):36–56, 1991.

[123] N. J. Nilsson. Teleo-Reactive Programs for Agent Control. Journal of
Artificial Intelligence Research, 1:139–158, 1994.

[124] M. H. Nodine and A. Unruy. Facilitating open communication in agent
systems: the InfoSleuth infrastructure. Intelligent Agents IV: Agent Theor-
ies, Architectures and Languages, 1365:281–295, 1998.

[125] P. Novák. Behavioural State Machines : Programming Modular Agents.
In AAAI 2008 Spring Symposium: Architectures for Intelligent Theory-Based
Agents, AITA ’08, 2008.

[126] P. Novák. Jazzyk : A Programming Language for Hybrid Agents with
Heterogeneous Knowledge Representations. Programming Multi-Agent
Systems, pages 72–87, 2009.

[127] H. S. Nwana. Software agents: an overview. The Knowledge Engineering
Review, 11(3):205–244, July 1996.

[128] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for Agents. In
Y. Lespérance and E. Yu, editors, Proceedings of the Agent-Oriented Inform-
ation Systems Workshop at the 17th National Conference on Artificial Intelli-
gence, pages 3–17, 2000.

[129] J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent inter-
action protocols in UML. In Proceedings of the First International Workshop
on Agent-Oriented Software Engineering, pages 121–140. Springer-Verlag,
2001.

[130] H. V. D. Parunak. Visualizing Agent Conversations: Using Enhanced
Dooley Graphs for Agent Design and Analysis. In Proceedings of the
Second International Conference on Multi-Agent Systems (ICMAS), 1996.

[131] V. Pautret. Jade Semantics Add-on Programmer’s guide. Technical re-
port, France Telecom, 2006.

268

[132] I. Pinyol and J. Sabater-Mir. Computational trust and reputation models
for open multi-agent systems: a review. Artificial Intelligence Review, July
2011.

[133] J. Pitt and A. Mamdani. A protocol-based semantics for an agent com-
munication language. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 486–491, 1999.

[134] G. D. Plotkin. A structural approach to operational semantics, 1981.

[135] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning
engine. Multi-Agent Programming: Languages, Platforms and Applications,
2005.

[136] S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS Agent Platform:
Open Source for Open Standards. In Proceedings of the 5th International
Conference and Exhibition on the Practical Application of Intelligent Agents
and Multi-Agents (PAAM2000), page 368, Manchester, 2000.

[137] N. Radjou, L. M. Orlov, and T. Nakashima. Adaptive agents boost sup-
ply network flexibility. Forrester Tech Strategy, 11, 2002.

[138] S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust in multi-agent
systems. The Knowledge Engineering Review, 19(1):1–25, Apr. 2004.

[139] A. S. Rao. AgentSpeak (L): BDI agents speak out in a logical computable
language. Agents Breaking Away, 1996.

[140] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice.
In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS ’95), pages 312–319, Cambridge, MA, USA, 1995. The MIT Press.

[141] A. Ricci, M. Viroli, and A. Omicini. CArtAgO : A Framework for Pro-
totyping Artifact-Based Environments in MAS. In F. Weyns, Danny and
Parunak, H. and Michel, editor, Environments for Multi-Agent Systems III,
volume 4389, pages 67–86. Springer, 2007.

[142] J. S. Rosenschein and M. R. Genesereth. Deals Among Rational Agents.
In Proceedings of the Ninth International Joint Conference on Artificial Intelli-
gence (IJCAI-85), pages 91–99, Los Angeles, CA, 1985.

[143] R. Ross, R. W. Collier, and G. M. P. O’Hare. AF-APL - Bridging Principles
& Practice in Agent Oriented Languages. In R. H. Bordini, M. Dastani,

269

and A. E. F. Seghrouchni, editors, Post-proceedings of the 3rd International
Workshop on Programming Multi Agent Systems (ProMAS 2005), pages 66–
88, Utrecht, The Netherlands, 2006. Springer.

[144] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is Transactional Program-
ming Actually Easier? ACM SIGPLAN Notices, 45(5):47–56, 2010.

[145] S. Russell, H. Jordan, G. M. P. O’Hare, and R. W. Collier. Agent Factory
: A Framework for Prototyping Logic-Based AOP Languages. In Pro-
ceedings of the Ninth German Conference on Multi-Agent System Technologies
(MATES 2011), Berlin, Germany, 2011.

[146] A. Santi and A. Ricci. Programming Distributed Multi-Agent Systems in
simpAL. In Proceedings of the 13th Workshop on Objects and Agents (WOA
2012), Milano, Italy, 2012.

[147] S. Sardina, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the
semantics of deliberation in Indigolog - from theory to implementation.
Annals of Mathematics and Artificial Intelligence, 41(2-4):259–299, 2004.

[148] J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge, 1970.

[149] Y. Shoham. Agent0: An agent-oriented programming language and its
interpreter. Journal of Object-Oriented Programming, 8(4):19–24, 1991.

[150] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1),
1993.

[151] M. Singh and A. Chopra. Correctness properties for multiagent systems.
Declarative Agent Languages and Technologies VII, pages 192–207, 2010.

[152] M. P. Singh. Agent Communication Languages: Rethinking the Prin-
ciples. Computer, 31(12):40, 1998.

[153] M. P. Singh. A social semantics for agent communication languages.
Issues in agent communication, pages 31–45, 2000.

[154] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.
Kephart, and S. R. White. A multi-agent systems approach to autonomic
computing. Autonomous Agents and Multiagent Systems, 2004. AAMAS
2004. Proceedings of the Third International Joint Conference on, pages 464–
471, 2004.

270

[155] S. R. Thomas. The PLACA agent programming language - Intelligent
Agents - Lecture Notes in Computer Science. Intelligent Agents: Theories,
Architectures and Languages. Lecture Notes in Artificial Intelligence, 890:355–
370, 1995.

[156] P. Torroni, F. Chesani, P. Yolum, M. Gavanelli, M. P. Singh, E. Lamma,
M. Alberti, and P. Mello. Modelling Interactions via Commitments and
Expectations. In V. Dignum, editor, Handbook of Research on Multi-Agent
Systems: Semantics and Dynamics of Organizational Models, chapter XI,
pages 263–284. Information Science Reference, 2009.

[157] M. Turner, D. Budgen, and P. Brereton. Turning software into a service.
Computer., 36(10):38–44, 2003.

[158] S. P. VanderWiel, D. Nathanson, and D. J. Lilja. Complexity and per-
formance in parallel programming languages. In Second International
Workshop on High-Level Programming Models and Supportive Environments,
pages 3–12, 1997.

[159] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the formal
semantics of speech-act based communication in an agent-oriented pro-
gramming language. Journal of Artificial Intelligence Research, 29(1):221–
267, 2007.

[160] D. Weyns, A. Omicini, and J. Odell. Environment as a first class abstrac-
tion in multiagent systems. Autonomous agents and multi-agent systems,
14:5–30, 2007.

[161] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart. An
architectural approach to autonomic computing. Proceedings of the first
International Conference on Autonomic Computing, 2004, pages 2–9, 2004.

[162] M. Winikoff. JACK intelligent agents: An industrial strength platform.
Multi-Agent Programming: Languages, Platforms and Applications, 2005.

[163] M. Winikoff, W. Liu, and J. Harland. Enhancing commitment machines.
In Declarative Agent Languages and Technologies II, pages 198–220, 2005.

[164] T. Winograd and F. Flores. Understanding computers and cognition.
Addison-Wesley, 1986.

271

[165] M. F. Wood and S. A. DeLoach. An overview of the multiagent systems
engineering methodology. In Proceedings of the First International Work-
shop on Agent-Oriented Software Engineering, pages 1–53. Springer, 2001.

[166] M. Wooldridge. Semantic issues in the verification of agent communic-
ation languages. Autonomous Agents and Multi-Agent Systems, 3(1):9–31,
2000.

[167] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-
tice. The knowledge engineering review, 10(02):115–152, 1995.

[168] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design. In Proceedings of the First Inter-
national Conference on Autonomous Agents and Multi-Agent Systems, pages
285–312. Springer, 2000.

[169] M. Wooldridge and A. S. Rao. Reasoning about rational agents. MIT Press,
Cambridge, Massachusetts, 2000.

[170] P. Yolum and M. P. Singh. Synthesizing finite state machines for com-
munication protocols. Technical Report TR-2001-06, North Carolina State
University, 2001.

[171] P. Yolum and M. P. Singh. Flexible protocol specification and execution:
applying event calculus planning using commitments. In Proceedings of
the First International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 527–534, 2002.

272

Part III

Appendices

APPENDIX

A

Agent UML Diagrams for FIPA
Interaction Protocols

This Appendix contains the Agent UML diagrams for the FIPA Interaction Pro-
tocols listed in Chapter 4. These are ordered in such a way to be consistent with
the order in which they are discussed in Chapter 4.

274

Figure A.1: FIPA Request Interaction Protocol (SC00026).

275

Figure A.2: FIPA Query Interaction Protocol (SC00027).

276

Figure A.3: FIPA Request When Interaction Protocol (SC00028).

277

Figure A.4: FIPA Subscribe Interaction Protocol (SC00035).

278

Figure A.5: FIPA Propose Interaction Protocol (SC00036).

279

Figure A.6: FIPA Contract Net Interaction Protocol (SC00029).

280

Figure A.7: FIPA Iterated Contract Net Interaction Protocol (SC00030).

281

Figure A.8: FIPA Brokering Interaction Protocol (SC00033).

282

Figure A.9: FIPA Recruiting Interaction Protocol (SC00034).

283

Figure A.10: FIPA English Auction Interaction Protocol (XC00031).

284

Figure A.11: FIPA Dutch Auction Interaction Protocol (XC00032).

285

Figure A.12: FIPA Cancel Meta Protocol.

286

APPENDIX

B

Schemas for ACRE Repositories

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:acre="http://acre.lill.is/XMLSchema"

xmlns="http://acre.lill.is"

targetNamespace="http://acre.lill.is"

elementFormDefault="qualified">

<xs:annotation>

<xs:documentation xml:lang="en">

Schema for ACRE Protocol Repository

Author: Dave Lillis [dave /at/ lill /dot/ is]

</xs:documentation>

</xs:annotation>

<xs:element name="repository">

<xs:complexType>

<xs:sequence>

<xs:element name="base" type="xs:anyURI"/>

<xs:element name="namespaces" type="namespaces-type"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="namespaces-type">

<xs:sequence>

<xs:element name="namespace" type="namespace-type"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="namespace-type">

<xs:sequence>

<xs:element name="protocol" type="protocol-type"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="namespace-name-type"

use="required"/>

287

</xs:complexType>

<xs:complexType name="protocol-type">

<xs:attribute name="name" type="name-type" use="required"/>

<xs:attribute name="version" type="version-type"

use="required"/>

</xs:complexType>

<!-- definition of ACRE namespace type -->

<xs:simpleType name="namespace-name-type">

<xs:restriction base="xs:string">

<xs:pattern value=

"[a-z\d]([a-z\d-]*[a-z\d])?(\.[a-z\d]([a-z-\d]*[a-z\d])?)*"/>

</xs:restriction>

</xs:simpleType>

<!-- definition of ACRE name type -->

<xs:simpleType name="name-type">

<xs:restriction base="xs:string">

<xs:pattern value="[a-z\d]([a-z\d-]*[a-z\d])?"/>

</xs:restriction>

</xs:simpleType>

<!-- definition of ACRE version type -->

<xs:simpleType name="version-type">

<xs:restriction base="xs:string">

<xs:pattern value="\d+\.\d+"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

Figure B.1: XML Schema Document for repository.xml files.

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:acre="http://acre.lill.is/XMLSchema"

targetNamespace="http://acre.lill.is"

xmlns="http://acre.lill.is"

elementFormDefault="qualified" >

<xs:annotation>

<xs:documentation xml:lang="en">

Schema for ACRE Protocol Definitions

Author: Dave Lillis [dave /at/ lill /dot/ is]

</xs:documentation>

288

</xs:annotation>

<!-- overall definition of ’protocol’ tag -->

<xs:element name="protocol">

<xs:complexType>

<xs:sequence>

<xs:element name="namespace" type="namespace-type" />

<xs:element name="name" type="name-type" />

<xs:element name="version" type="version-type"/>

<xs:element name="description" type="xs:string"

minOccurs="0"/>

<xs:element name="import" type="import-type"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="states" type="states-type"

minOccurs="0"/>

<xs:element name="transitions" type="transitions-type"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<!-- ’states’ tag contains a sequence of ’state’ tags -->

<xs:complexType name="states-type">

<xs:sequence>

<xs:element name="state" type="state-type"

maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<!-- ’state’ tags must have a ’name’ attribute -->

<xs:complexType name="state-type">

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

<!-- ’transitions’ tag has a sequence of ’transition’ tags -->

<xs:complexType name="transitions-type">

<xs:sequence>

<xs:element name="transition" type="transition-type"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<!-- ’import’ must include the namespace, name

and version of the imported protocol -->

<xs:complexType name="import-type">

289

<xs:sequence>

<xs:element name="namespace" type="namespace-type" />

<xs:element name="name" type="name-type" />

<xs:element name="version" type="version-type" />

</xs:sequence>

</xs:complexType>

<!-- ’transition’ tag has 6 attributes: 3 are mandatory -->

<xs:complexType name="transition-type">

<xs:attribute name="performative" type="xs:string"

use="required" />

<xs:attribute name="from-state" type="xs:string"

use="required" />

<xs:attribute name="to-state" type="xs:string"

use="required" />

<xs:attribute name="sender" type="variable-type"

default="?" />

<xs:attribute name="receiver" type="variable-type"

default="?" />

<xs:attribute name="content" type="xs:string"

default="?"/>

</xs:complexType>

<!-- definition of ACRE namespace type -->

<xs:simpleType name="namespace-type">

<xs:restriction base="xs:string">

<xs:pattern value=

"[a-z\d]([a-z\d-]*[a-z\d])?(\.[a-z\d]([a-z\d-]*[a-z\d])?)*"/>

</xs:restriction>

</xs:simpleType>

<!-- definition of ACRE name type -->

<xs:simpleType name="name-type">

<xs:restriction base="xs:string">

<xs:pattern value="[a-z\d]([a-z\d-]*[a-z\d])?"/>

</xs:restriction>

</xs:simpleType>

<!-- definition of ACRE version type -->

<xs:simpleType name="version-type">

<xs:restriction base="xs:string">

<xs:pattern value="\d+\.\d+"/>

</xs:restriction>

</xs:simpleType>

<!-- definition of ACRE variable type -->

290

<xs:simpleType name="variable-type">

<xs:restriction base="xs:string">

<xs:pattern value="\?{1,2}?\w*"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

Figure B.2: XML Schema Document for protocol declarations.

291

APPENDIX

C

Interaction Protocols for Trading
Evaluation Scenario

This appendix presents the interaction protocols used in the trading evalu-
ation scenario set out in Chapter 9, along with the instructions given to the
participants. The protocols are organised under the heading of the agent they
relate to. The description of each agent and their associated protocols that
was given to evaluation participants is also included. Changes that have been
made to the descriptions provided in the original scenario are for typesetting
and formatting reasons. One short section detailing how participants should
submit their code has been omitted from this appendix.

Each protocol is based on one or more of the standard FIPA Interaction Pro-
tocols discussed in Chapter 4. The system agents that were provided to par-
ticipants were discoverable via Agent Factory’s Directory Facilitator Service
(DFS). The “DFS Name” provided for each agent is the name by which the
DFS identifies it.

C.1 Agent Trading Game

The Agent Trading Game is designed to help you gain experience both with in-
teracting with other agents and implementing strategic planning within your
agent programming language of choice.

You are required to create an agent that buys and sells items with the aim
of earning as much money as possible. To do this, your agent must interact
with a number of other agents using a variety of well-defined protocols. The
protocols that the agents should use have been created in advance and are
expressed as ACRE protocols.

292

As the game runs, a graphical user interface (GUI) will show how the stocks
are performing, as well as all the transactions you engage in (buying or selling
items). You can also see how much money you have in the bank and what
items you own.

The game is controlled by a clock (you can see the clock ticking in the top right
corner of the GUI). Each clock tick represents one day. Your aim is to earn as
much money as possible at the end of one year (i.e. 365 days). At this point,
the game will add your bank balance to the value of the items you own at that
time to find your total score for the game.

The agents you need to interact with are as follows (more in-depth descriptions
of how they work are provided later):

• The Banker Agent: The role of the Banker agent is to keep track of how
much money you have. The first thing you will have to do is contact the
Banker to open a bank account. At any time, the Banker can tell you how
much money you have in this account.

• The StockBroker Agent: The StockBroker agent is in charge of buying
and selling stocks and shares. You can earn money by buying stocks at
low prices and selling them later at a profit. To help you with this, the
StockBroker can give you a list of all the stocks and their prices, as well
as buying or selling stocks for you.

• The Guru Agent: The best way to find out which stocks are the right ones
to buy is by asking an expert. The Guru agent can tell you which stocks
are likely to go up in value and are worth investing in. By subscribing to
the Guru’s information, you can make better decisions about what stocks
to buy from the StockBroker.

• The Auctioneer Agent: Stocks and shares are only one way of making
money. The Auctioneer Agent, however, allows you to buy and sell
property, which can make you far more money than on the stock mar-
ket. From time to time, the Auctioneer will advertise properties for sale
that you can bid for. If you are successful, the value of your property will
rise very quickly, guaranteed! However, at the start you won’t be able to
afford to take part in these auctions, so you’ll have to make some money
on the stock market first.

• The Bidder Agents: The Bidder agents are the people you can sell your
properties to after buying them from the Auctioneer. These compete

293

against each other, so you should be able to get the best deal by enga-
ging them in an auction.

C.1.1 Protocols

All of the protocols used in this scenario can be viewed in detail using
the ACRE Repository Manager. To view and explore these protocols, you
should open the remote repository located at: http://www.lill.is/

acre/trading.

The protocols are grouped into namespaces: one for each of the system agents
you need to interact with (e.g. all of the Banker Agent’s protocols are stored
under the ”trading.bank” namespace).

In most cases, the protocols presented here are based on a FIPA standard in-
teraction protocol. The full list of FIPA interaction protocols is located at the
following URL: (http://www.fipa.org/repository/ips.html). Fre-
quently, however, the protocols here do not follow the FIPA protocols exactly.
In some cases, elements of the FIPA protocol are optional, and additionally
the FIPA standard protocols do not specify any restrictions on the content of
messages, just the performatives they contain.

C.1.2 Suggested Strategy

The best way to tackle this game is to take the following steps in order:

1. Open a bank account: you won’t be able to buy or sell anything until you
have done this.

2. Find out what stocks the StockBroker has available: You can’t buy stocks
until you know their names! Also, you won’t be able to afford to parti-
cipate in any auctions with the amount of money you begin with.

3. Buy some stocks: Stocks increase in value, so you can make money by
buying stocks and selling them later.

4. Ask the Guru for advice: The Guru knows which stocks will rise in value
the quickest. Once you’re able to buy stocks, you can concentrate on
buying the best stocks.

294

5. Sell your stocks again: If you want to participate in any auctions, you’ll
need cash. You get cash by selling stocks for more than you paid for
them.

6. Subscribe to the Auctioneer to find out about upcoming auctions: Buying
items in auctions is the best way to make lots of money quickly. The
market price of items doubles within a couple of days of you buying
them.

7. Buy items in auction.

8. Sell items you’ve bought: After you buy items in auctions, their market
value increases very quickly during the following two days. After this
happens, the value will not change again in the future. Selling items
you’ve already bought means that you can use the money to bid on more
auctions, or re-invest in the stock market.

295

C.2 The Banker Agent
(DFS Name: “banker”)

The Banker agent is responsible for storing your money for you. Whenever
you buy items from the Stockbroker or Auctioneer, the money comes from
your bank account. Any money you gain from selling items goes to your bank
account too. There are two different types of conversation you can have with
your bank. Firstly, you can open a bank account and secondly you can check to
see how much money you have. When you buy and sell items, the other agents
will contact your bank directly to arrange for the money to be transferred.

C.2.1 Protocol: trading.bank.open

Purpose: Open a bank account

Based on: FIPA Request Interaction Protocol
(http://www.fipa.org/specs/fipa00026)

Variables:

?id: The identifier used as the name of the bank account.

?amount: The amount of money in the account when it has been opened.

Description: This protocol allows you to request that the Banker agent open
an account for your agent. In certain situations, the Banker may refuse (if, for
example, your agent already has a bank account).

If the creation of the account succeeds, the Banker agent will reply with an
inform message that includes the identifier by which your account should
be referred (the ?id variable) and the opening balance in the account (this is
shown in the ?amount variable).

Figure C.1: Finite State Machine representing the “trading.bank.open” pro-
tocol.

296

C.2.2 Protocol: trading.bank.enquiry

Purpose: Query the Banker agent to find out how much money is in a bank
account.

Based on: FIPA Query Interaction Protocol
(http://www.fipa.org/specs/fipa00027)

Variables:

?id: The identifier of the bank account in question (this name would
have been supplied by the Banker agent when you opened your
account).

?amount: The amount of money in the account.

Description: The amount of money available in your bank account will change
as you buy and sell stocks and other items. This protocol is provided so that
you can ask the Banker about your account balance at any time. The Banker
may refuse if you ask about an account that you don’t own, or the request may
fail if you have not previously opened an account.

Figure C.2: Finite State Machine representing the “trading.bank.enquiry” pro-
tocol.

297

C.3 The StockBroker Agent
(DFS Name: “stockbroker”)

The StockBroker Agent allows you to buy or sell stocks. You should aim to
buy stocks at a low price and later sell them at a profit. When you first interact
with the StockBroker, you will need to check what stocks it has listings for.
Following this, you can check the price of a stock, buy and sell stocks, and
check what stocks you have in your portfolio.

C.3.1 Protocol: trading.broker.listing

Purpose: : Find out what stocks it is possible to buy.

Based on: FIPA Query Interaction Protocol
(http://www.fipa.org/specs/fipa00027)

Variables:

?stocklist: A list of the names of the stocks that are available.

Description: With this protocol, you are asking the StockBroker which stocks
you may buy and sell to/from it. This is done using a query-ref message,
in which you ask for a listing.

If the StockBroker doesn’t refuse, it will send a message containing the listing
as a list. As an example, the content of this message will look something like
the following (for three sample stocks):

listing(["Nile Ltd.", "Shannon Inc.",

"Mississippi Corp."]);

Figure C.3: Finite State Machine representing the “trading.broker.listing’ pro-
tocol.

298

C.3.2 Protocol: trading.broker.price

Purpose: out the current price of a particular stock.

Based on: FIPA Query Interaction Protocol
(http://www.fipa.org/specs/fipa00027)

Variables:

?stock: The name of the stock in question.

?price: The current price of the stock.

Description: This protocol allows you to ask the Broker about the price of a
particular stock. This is done by sending a query-ref message that includes
the name of the stock about which you are enquiring (in the ?stock para-
meter). The Broker will normally respond with an inform message that tells
of the price of the stock that was requested. In some situations (e.g. if the
stock’s name is unknown), the request may fail.

Figure C.4: Finite State Machine representing the “trading.broker.price” pro-
tocol.

C.3.3 Protocol: trading.broker.portfolio

Purpose: Find out details of stocks you currently own, including the quantity
of the stock, the price it was bought at and its current value.

Based on: FIPA Query Interaction Protocol
(http://www.fipa.org/specs/fipa00027)

Variables:

?portfolio: A list of the details of the stocks you own.

299

Description: This is a simple query protocol that allows you to find out what
stocks you own. The StockBroker may refuse if you have not previously
bought any stocks. If you do own stocks, it will reply with an inform mes-
sage that includes your portfolio in the ?portfolio parameter.

This parameter is a list of lists (i.e. a 2-dimensional list). Each individual list is
made up of two values: the first value is the name of a stock, the second value
is the quantity of that stock you own. For example, if you owned 400 units of
ABC Ltd. stock, 300 units of XYZ Inc. stock and 250 units of REM LLC. stock,
the content of this inform message would be:

portfolio([["ABC Ltd.",400],["XYZ Inc.",300],

["Rem LLC.",250]])

Figure C.5: Finite State Machine representing the “trading.broker.portfolio”
protocol.

C.3.4 Protocol: trading.broker.buy

Purpose: Buy some quantity of an available stock.

Based on: FIPA Request Interaction Protocol
(http://www.fipa.org/specs/fipa00026)

Variables:

?stock: The name of the stock that is to be bought.

?value: The total value of the stock that is to be bought.

?qty: The quantity of the stock to be bought.

Description: The “buy” protocol allows an agent to buy stock from the Broker.
The initial request to buy stocks can be expressed in either of two ways. In each
case, the ?item parameter is used to indicate the stock to be bought, however

300

the requesting agent has the option of specifying either a quantity of stock that
is desired or else the value of the stock it wants to buy.

In either case, the broker will typically respond with a proposal to sell a par-
ticular quantity of the stock at a particular total value. In some cases, the total
value will not be exactly the same as what was initially requested. For ex-
ample, if the price of a stock is 3, and you have requested to buy a value of
100, the broker will respond with a proposal to sell a quantity of 33 units, lead-
ing to an overall value of 99, rather than 100.

The player may now either accept this proposal or reject it. If the proposal
is accepted, the broker will respond to indicate whether the transaction was
successful or not (this may happen if the player does not have enough money
in its account to complete the purchase).

C.3.5 Protocol: trading.broker.sell

Purpose: some quantity of stock that you have previously bought.

Based on: FIPA Request Interaction Protocol
(http://www.fipa.org/specs/fipa00026)

Variables:

?stock: The name of the stock that is being sold.

?value: The quantity of stock being sold.

?qty: The value of the stock being sold, at current market prices.

Description: The “sell” protocol is almost identical to the “buy”” protocol de-
scribed above. In this case, you wish to sell a quantity of stock that it has
previously bought. The initial request to sell can be expressed as a quantity of
stock that is to be sold, or a value of stock that is to be sold.

Failure of this protocol may come about if the player does not own enough
stock for the sale to go through.

301

Figure C.6: Finite State Machine representing the “trading.broker.buy” pro-
tocol.

302

Figure C.7: Finite State Machine representing the “trading.broker.sell” pro-
tocol.

303

C.4 The Guru Agent
(DFS Name: “guru”)

The Guru Agent knows what is likely to happen in the stock market, so it can
tell you which stocks are good to buy (or sell) during the game. The guru only
knows one protocol, which allows you to subscribe to its stock tips.

C.4.1 Protocol: trading.guru.subscribe

Purpose: Ask the Guru agent to provide information on future stock move-
ments.

Based on: FIPA Subscribe Interaction Protocol
(http://www.fipa.org/specs/fipa00035)

Variables:

?stock: The name of the stock about which the guru has information.

?rise: The % increase in the price of the stock that is expected.

?days: The number of days it is expected for the full stock rise to occur.

Description: When advice comes from the Guru agent, it can either be advice
to buy a particular stock, or to sell it. Advice to sell a stock indicates that its
value is not expected to rise significantly in the near term. If a player already
has bought this stock, it should consider selling it and investing the money in
other stocks. Players that do not own this stock should not buy it at present.

Advice to buy is more complex, however. The guru will also tell you by how
much it is to rise (the ??rise parameter contains this information as a percent-
age) and how long this rise will take (in the ??days parameter). For example,
if a stock called “Blue” is to double in price over the next week, this would be
indicated by the message buy(Blue,100,7).

The Guru will continue sending advice for as long as you’re subscribed. If you
want to stop receiving the Guru’s advice, you will have to cancel the conver-
sation.

304

Figure C.8: Finite State Machine representing the “trading.guru.subscribe”
protocol.

305

C.5 The Auctioneer Agent
(DFS Name: “auctioneer”)

The Auctioneer Agent allows you to buy high-value items that will quickly
rise in value. From time-to-time, it will inform subscribed agents of an item
that is available for auction. Winning an auction (by offering the most money
for the item on sale) means that you now own the item and can subsequently
sell it for a profit (see the Bidder agents section below for details of selling
items).

The Auctioneer will only run one auction at a time, so it waits for one auction
to finish before announcing the beginning of the next auction.

C.5.1 Protocol: trading.auctioneer.subscribe

Purpose: Subscribe to any auctions that the Auctioneer wishes to hold and bid
on those in which we’re interested.

Based on: FIPA Subscribe Interaction Protocol
(http://www.fipa.org/specs/fipa00035)
and FIPA English Auction Interaction Protocol
(http://www.fipa.org/specs/fipa00031)

Variables:

?item: The identifier of the item that is being auctioned.

?amt: The amount of money the auctioneer is seeking, or the bidder is
offering.

Description: This is a complex protocol with two parts: the first is the process
of subscribing to the Auctioneer agent’s auctions. The second is the auction
itself, where the Auctioneer asks for bids to be made for the item in question.

Subscribing is done by sending a subscribemessage to the Auctioneer. If the
Auctioneer agrees, you are now subscribed to announcements about auctions
(this is the subscribed state).

From here, the Auctioneer will begin an auction by issuing a call for proposals
(via a cfp message) that asks for bids for a particular item to be made. If you
do not wish to take part in the auction, you may refuse, which returns the

306

conversation to the subscribed state in which you await the next auction to be
advertised.

Submitting a bid is done using a propose message, which brings the con-
versation to the proposed state. From here, the Auctioneer may either accept
or reject the bid. If it rejects the bid (usually because another agent made the
same bid earlier), it will then issue a new call for proposals at a higher price.
This results in the conversation returning to the called state, where you again
have the option to bid or to refuse.

If the offer is accepted, then the Auctioneer will attempt to complete the trans-
action. This may fail if, for example, you don’t have enough money to cover
the bid you made. A successful transaction results in the conversation return-
ing to the subscribed state again, where you will hear about new auctions as
they arise.

Figure C.9: Finite State Machine representing the “trad-
ing.auctioneer.subscribe” protocol.

307

C.6 The Bidder Agents
(DFS Names: “bidder1”, “bidder2”, “bidder3”)

The Bidder agents are usually willing to buy items that you have bought after
an auction with the Auctioneer agent. To get the highest price for the item you
are selling, you should engage all bidders in an auction and choose the highest
bid.

C.6.1 Protocol: trading.bidder.sell

Purpose: : Sell an item that was previously bought from the Auctioneer.

Based on: FIPA Contract Net Interaction Protocol
(http://www.fipa.org/specs/fipa00029))

Variables:

?item: The identifier of the item being sold.

?amt: The amount of money being bid.

Description: Unlike the protocols that the other agents can engage in, this
protocol is intended to be used in a group, where a number of different con-
versations are occurring at the same time. This works like a one-shot auction
whereby each bidder is asked to bid on an item and each submits one bid (if
it wishes: it is permitted to refuse). You, acting as the auctioneer in this case,
should accept the highest bid and reject the others.

The protocol begins with the Bidder being asked to submit a bid for an item.
Each bidder may refuse to participate in the auction or it may make a bid
using a propose message. Once bids have been received, the player has the
option of accepting or rejecting the proposal. If a proposal is accepted, the
bidder will then inform the player that the transaction has been completed, or
alternatively that the transaction has failed (e.g. if the player is attempting to
sell an item it does not own).

308

Figure C.10: Finite State Machine representing the “trading.bidder.sell” pro-
tocol.

309

