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ABSTRACT
Data Fusion combines document rankings from multiple systems
into one, in order to improve retrieval effectiveness. Many ap-
proaches to this task have been proposed in the literature, and
these have been evaluated in various ways. This paper examines
a number of such evaluations, to extract commonalities between
approaches. Some drawbacks of the prevailing evaluation strate-
gies are then identified, and suggestions made for more appropriate
evaluation of data fusion.
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1 INTRODUCTION
In the context of Information Retrieval, “data fusion” (also known
as “rank aggregation”) is a process whereby the ranked results
of several systems, searching the same corpus, are combined into
one single set of results to return to a user. Numerous algorithms
have been proposed to perform data fusion effectively, with most
attempting to leverage one or more of the following “effects” [25]:
the skimming effect argues that prioritising highly-ranked docu-
ments in the input results will be beneficial; the chorus effect argues
that if several systems include a document in their results, then
this is evidence of relevance; and the dark horse effect notes that a
system may occasionally return unusually accurate (or inaccurate)
results compared to others, and this can be leveraged for effective
retrieval. In practice the dark horse effect is rarely leveraged due to
its inherent unpredictability.

Despite the myriad approaches that have been proposed, it can
be argued that the community has not converged on a consensus
about what the most effective approach(es) are in practice. This
paper aims to explore why that is the case, by examining how newly-
proposed approaches are evaluated and makes some suggestions
for how this could be better unified in the future.
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2 EVALUATION OF FUSION
While the evaluation methodology employed in practice is rarely
uniform, sufficient commonality exists to be able to outline some
characteristics of what may be described to be a “typical” approach.
The following subsections outline aspects of evaluation that can be
observed in a substantial body of research.

2.1 Use of standard test collections and results
The Text REtrieval Conference (TREC)1 has long been a rich source
of experimental data for data fusion, given that the runs submit-
ted to TREC tasks are made available afterwards. The popularity
of TREC data in data fusion experiments is evidenced in many
studies [1–4, 7, 9, 12, 13, 15–20, 22, 24, 26–29]. Other sources in-
clude ImageCLEF2 [30] and the NTCIR3 IMine track [4]. Although
this may seem to represent a consistency amongst researchers, it
remains the case that different tracks are used and no consistent
method of choosing which and howmany runs to fuse has emerged.

2.2 Use of standard evaluation metrics
A feature of most data fusion research is the use of standard IR
metrics for evaluation. Popular metrics for ad hoc tasks include:

• Precision at 𝑛 (P@n) [1, 9, 11, 12, 15–17, 19, 22, 24, 26, 28]
• Average Precision (AP) orMeanAverage Precision (MAP) [1–
3, 6, 7, 9, 11–13, 15–20, 22, 24, 26–28, 30]

• Precision/Recall curves [13, 20, 24]
• Binary preference (bpref) [16, 17, 24]
• Recall-level precision (R-prec) [27, 28]
• Success at 𝑛 documents (S@n) [9]
• Normalised Discounted Cumulated Gain (NDCG) [4, 15, 28]
• Mean Reciprocal Rank (MRR) [24]

2.3 Comparison with component systems
Many fusion researchers compare the fusion output with the quality
of its inputs as part of their evaluation. This is an intuitively reason-
able approach, as it acknowledges that merging result sets does not
guarantee an improvement in quality. Generally, the comparison is
made with the input run that has achieved the highest score accord-
ing to the metric being used [1–4, 6, 7, 11–13, 15, 20, 26–28, 30]. A
fusion method that improves upon this justifies its development
by indicating that it is not possible to achieve equivalent results
simply by choosing a single high-performing IR system.

Alternative comparisons include those involving the mean eval-
uation scores of the component systems [2, 26] or the median run
amongst those available [19].

1http://trec.nist.gov
2http://imageclef.org
3http://research.nii.ac.jp/ntcir
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2.4 Comparison with other fusion algorithms
In addition to comparing a proposed fusion algorithm with the
component systems’ outputs, evaluation typically also includes a
comparison with one or more competing data fusion algorithms [2,
3, 11–14, 16–20, 22, 24, 26–28, 28, 30]. There is great variation in
the algorithms chosen for comparison.

When comparing against individual component systems or other
algorithms, it is common to illustrate the difference in scores using
either a chart or a table. In some cases, the degree of improvement
(or disimprovement) is emphasised by displaying the increase (or
decrease) in performance as a percentage of the baseline [2, 4, 6, 7,
9, 16, 17, 19, 27].

2.5 Statistical significance tests
Because most single-score evaluation metrics are averaged over a
number of queries, many researchers also include statistical sig-
nificance tests in order to show a significant improvement. For
this purpose, a two-tailed paired t-test is most commonly em-
ployed [1, 4, 9, 12, 15–18, 22, 24, 26–30], although the Wilcoxon
signed-rank test has also been used [11, 19].

2.6 Training data
Supervised data fusion approaches rely on knowledge of the past
performance of the component systems. Evaluations generally
divide the set of available queries into a training set and a test
set [2, 6, 16–18, 24, 30].

3 DISCUSSION
The previous section illustrates that although no single evaluation
framework for fusion has been agreed, certain features can be rea-
sonably considered to be a “typical” aspect of data fusion evaluation.
The following sections examine these aspects in more detail, and
in particular examine the assumptions inherent in them.

3.1 Dark horse effect not considered
The dark horse effect is difficult to identify and exploit, and so it is
generally not considered in the literature. Algorithms rarely attempt
to leverage the effect, but also it is not considered in evaluation.

When comparing against the best component system, the most
common approach is to choose a single component system based
on its performance over all queries as measured by some evaluation
metric. Statistical significance tests are run on a per-query basis
against the outputs of that single best component system.

However, this ignores the potential for improving on single-
system performance without requiring a fusion algorithm to be
employed. Assuming that no component system achieves the best
evaluation scores on all queries, there is potential for improvements
to be achieved by choosing the best set of results on a per-query
basis, thus exploiting the dark horse effect. The reason why this
is important is because it represents the best performance that it
is possible to achieve without merging result sets. If a data fusion
algorithm can improve upon this score, then the case for fusion is
clear: the results achieved by using data fusion cannot possibly be
achieved using non-merging methods.

Examples of this being taken into account are rare. In [20], the
comparison with the best component system includes the results of

choosing the best component system on a per-query basis. This is
done with a view to examining the limits of what is possible. Result
set selection has also been attempted as an alternative to fusion [5].
This attempts to improve upon an individual component system by
trying to identify the best result set for each query and return that
to the user, without fusion being performed.

3.2 Fusion is different to classic IR

Figure 1: The Data Fusion Process

The use of standard evaluation metrics and standard data sets
(e.g. from TREC) shows that data fusion is typically treated in the
same way as standard ad hoc IR. However, it can be argued that
fusion is a different challenge with its own characteristics.

Figure 1 illustrates the way in which the IR process can incorpo-
rate a data fusion algorithm. It operates as follows:

(1) A number of component IR systems search a document col-
lection when they are provided with a query.

(2) Each component system produces a ranked list of results.
(3) A single, combined set of results is created and returned.
From this illustration, it can be seen that there are actually two

contexts within which fusion can be applied. Firstly, when engaging
in an ad hoc task that is based on a document corpus, a data fusion
component can play a role in the overall architecture to combine
the results of several rankers. In this situation, all documents in the
corpus are available to the system as a whole, and traditional ad
hoc retrieval evaluation is entirely appropriate.

However, many fusion researchers use pre-existing runs from
separate systems in order to make comparisons with other fusion
algorithms, as opposed to comparing with entire systems. In this
scenario, the process that is actually being evaluated begins with
the individual result sets (marked as “Fusion Task” in Figure 1).

Although this may appear at first to be a minor distinction, it has
the consequence that when a fusion algorithm is being compared
against others, the set of documents that can be included in the
final output is not the entire document collection, and is likely not
the entire set of relevant documents. This is in contrast to standard
ad hoc IR. Instead, only the subset of documents that have been
retrieved by at least one component system that is available. When
considering evaluation purely from the point of view of making
comparisons, this will not have a major effect, as a superior algo-
rithm should achieve higher evaluation scores regardless. However,
as discussed below, this has consequences for how the results are
interpreted and is contrary to readers’ expectations with regard to
the intuitive understanding of evaluation metrics.
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3.3 Reduction in recall
All mainstream ad hoc evaluation metrics operate within a range
between 0 (no relevant documents) and 1 (perfect retrieval). While
raw evaluation scores are not useful in isolation, the theory of these
metrics is based on intuitive upper and lower bounds.

Since the documents available to a data fusion algorithm are only
those returned by the component systems, recall will be reduced
in most cases. Any relevant document from the corpus that no
component system has returned cannot be included in the fused
results. This has consequences for the popular metrics, as follows:

• Precision: Omitting some relevant documents will not affect
precision. Perfect precision is possible if the fuser filters all
non-relevant documents.

• P@10: In most practical situations there will be no effect. An
exception is if fewer than 10 relevant documents are available
due to poor system performance or a difficult query.

• MAP: A system that fails to return all relevant documents
will achieve MAP below 1.0. This happens if any relevant
document is not included in some input.

• NDCG: In a similar way to MAP, NDCG will be less than 1.0
with imperfect recall, because it will include documents that
are not available to the fuser.

• NDCG@10: As with P@10, the effect on this metric is likely
to be less pronounced. It will be unaffected if the input sys-
tems collectively find at least 10 documents at the maximum
relevance level.

• bpref: For a perfect bpref score, all relevant documents must
be returned before any judged non-relevant document. Again,
any relevant documents that are not available to the fuser
will adversely affect the score in the same way as for MAP.

This analysis indicates that when considering the fusion task in
isolation, the theoretical upper bound for several metrics is now
unknown. This is illustrated in Table 1, which shows the practical
upper bounds for a particular set of inputs from the ad hoc task of
the TREC 2014 Web Track. The first 1,000 results in each run are
considered for this illustrative experiment. Each metric is the result
of perfectly fusing four runs (i.e. choosing only the judged relevant
documents and ranking them based on the grade of relevance). First
the perfect fuser fused the 4 runs with the highest NDCG for the
ad hoc task. This was repeated for the bottom 4 runs.

Table 1: Illustration of upper bounds for fusion.

Metric Top 4 Bottom 4
Recall 0.8102 0.6224
Precision 1.0000 1.0000
P@10 0.9720 0.9760
MAP 0.8360 0.6602
NDCG 0.8920 0.7387
NDCG@10 0.9748 0.9152
bpref 0.8360 0.6602

The results demonstrate the highest evaluation stores that are
theoretically possible with fusion for these inputs. When the col-
lective recall of the component systems is imperfect, the maximum
scores achievable for almost all metrics fall below 1.0.

P@10 and NDCG@10 fall below 1.0 as a result of a small number
of topics where there are fewer than 10 relevant documents. The

other metrics (MAP, NDCG and bpref) all suffer a reduction due to
the absence of some relevant documents in the input result sets.

This issue has occasionally been taken into account in the fusion
literature. For example, in [3], the fusion output was compared to
two bounds, chosen to reflect the possible performance level. The
“naïve bound” referred to the best results that were possible if only
documents that had been returned by the component systems were
considered. The “ordered pairs bound” additionally assumed that a
fusion algorithm would act reasonably, so that a document that was
ranked above another in all input result sets could not be ranked
below it in the final output. Similarly, [23] compared fusion results
against an “oracle” that always exhibited optimal selection.

To restore the intuitive theoretical 0-to-1 range, the evaluation
metrics could be normalised when only the fusion task is being
evaluated. A simple suggestion would be to only use judgments for
documents that were available to fuser through its input result sets.

3.4 Percentage increases
Several studies report their percentage increase in certain metrics
over their baselines. This has similar problems in that this pre-
sentation is unintuitive and difficult to interpret beyond a simple
comparison between approaches. This happens for two reasons.
Firstly, lower baseline scores have a greater potential for percentage
increases. Secondly, the maximum percentage increase that it is pos-
sible to achieve will be unknown for the reasons outlined above in
the previous section. Thus the raw percentage increase will be very
difficult to contextualise. Although normalised metrics help address
the latter issue, the first problem remains unaddressed. As such,
percentage increases are not recommended for fusion evaluation.

3.5 Model complexity
The most commonly-used baselines tend to be simple techniques
like CombMNZ [10], Borda fuse [3] or Reciprocal Rank Fusion [8]:
straightforward models that are easy to implement. More com-
plex models are much less commonly used, and as such a detailed
comparison of these from the literature is difficult. Traditionally,
implementations of proposed models have often not been made
available to other researchers for comparison, and so there is a
burden on researchers to re-implement more complex models.

4 CONCLUSIONS AND FUTUREWORK
This paper has presented an examination of how data fusion is eval-
uated. Evaluations tend to use established datasets from TREC and
mainstream IR evaluation metrics. Comparisons are generally made
with the best individual system as well as with other baseline fusion
techniques. The paired t-test is the most common significance test.
Although not all papers surveyed had all these characteristics, this
is a reasonable characterisation of a “typical” setup.

However, this paper also argues that the fusion task in isolation
is different to traditional ad hoc retrieval. Using ad hoc metrics as-is
removes the intuitive 0-1 range that it normally found in evaluation.
It is suggested that normalised metrics should be used for fusion.

The recent TrecTools project [21] includes implementations of
some fusion techniques. This may provide a platform upon which
future fusion work can be based if implementations of new and
existing models are shared amongst the community.
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