
Received 15 February 2023, accepted 10 March 2023, date of publication 21 March 2023, date of current version 27 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3260147

A Survey on Microservices Trust
Models for Open Systems
ZHONGYI LU 1, DECLAN T. DELANEY 2, AND DAVID LILLIS 1, (Senior Member, IEEE)
1School of Computer Science, University College Dublin, Dublin 4, D04 V1W8 Ireland
2School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, D04 V1W8 Ireland

Corresponding author: David Lillis (david.lillis@ucd.ie)

This research is funded under the Science Foundation Ireland (SFI) Strategic Partnerships Programme (16/SPP/3296)
and is co-funded by Origin Enterprises plc.

ABSTRACT The microservices architecture (MSA) is a form of distributed systems architecture that has
been widely adopted in large-scale software systems in recent years. As with other distributed system
architectures, one of the challenges that MSA faces is establishing trust between the microservices,
particularly in the context of open systems. The boundaries of open systems are unlimited and unknown,
which means that they can be applied to any use case. Microservices can leave or join an open system
arbitrarily, without restriction as to ownership or origin, and MSA systems can scale extensively. The
organisation of microservices (in terms of the roles they play and the communication links they utilise) can
also change in response to changes in the environment in which the system is situated. The management of
trust within MSAs is of great importance as the concept of trust is critical to microservices communication,
and the operation of an open MSA system is highly reliant on communication between these fine-grained
microservices. Thus, a trust model should also be able to manage trust in an open environment. Current trust
management solutions, however, are often domain-specific and many are not specifically tailored towards
the open system model. This motivates research on trust management in the context of open MSA systems.
In this paper, we examine existing microservices trust models, identify the limitations of these models in the
context of the principles of open microservices systems, propose a set of qualities for open microservices
trust models that emerge from these limitations, and assess selected microservices trust models using the
proposed qualities.

INDEX TERMS Microservices, trust management, service oriented architecture, open systems.

I. INTRODUCTION
As the complexity of enterprise applications has grown
significantly, monolithic systems have long been consid-
ered unfit for modern systems. Service-Oriented Architec-
ture (SOA), was introduced to address industrial demands
for large enterprise systems [1] and has gained popular-
ity over the past two decades [2]. SOA is a software
architecture that decomposes systems into sets of reusable
software components: services, to support software user
requirements [3].Web services, which are applications acces-
sible to other applications over the Web [4], have become
a way to implement SOA [3]. It has been identified,

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Agostino Ardagna .

however, that Web services cannot support all the princi-
ples of SOA [2]. In 2014, an extended notion of SOA,
the Microservices Architecture (MSA), was introduced [5],
and has gained popularity in the construction of enterprise
applications ever since.

The main strategy of microservices is decomposing large
monolithic applications into many small components that
communicate with each other using lightweight mechanisms,
often HTTP resource APIs [6]. Large companies like Netflix,
the Guardian, Uber, Etsy, and Amazon use MSA to deliver
their services [7].

The importance of trust management has been stressed
in previous research. To protect MSA systems from
attacks coming from malicious microservices, only trusted
microservices can be incorporated into the system [8].

28840
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6428-8782
https://orcid.org/0000-0001-7028-3307
https://orcid.org/0000-0002-5702-4463
https://orcid.org/0000-0001-7426-4795


Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

Many competing definitions of ‘‘trust’’ have been advanced
in the literature. In this paper, we combine the definitions
of trust given in [9] and [10]. Dasgupta [9] defined a trust-
worthy system as as one that ‘‘will do what it says and
only what it says’’. Truong et al. [10] defined trust as ‘‘a
belief of a truster in a trustee that the trustee will provide
or accomplish a trust goal as truster’s expectation within a
specific context for a specific period of time’’. Therefore,
for this research, trust is A belief of a truster in a trustee
that the trustee will provide or accomplish the services that
it says it will provide and meet the expectations of the
truster within a specific context for a specific period of
time.

As microservices should provide open descriptions of
their APIs, GUIs and communication message formats [11],
some companies and researchers have focused on the use
of MSA to build open systems [12], [13]. Open systems
exist in contrast to closed systems. Closed systems are often
designed for a specific task [14]. On the contrary, open
systems can react to environments that are changing con-
tinuously, unlimitedly, and unanticipatedly [15]: this could
be the components inside the systems, the organisation of
components, the services offered by the system, the use
cases of the systems, etc. Inside open microservices systems,
microservice instances can be designed and implemented in
different styles, be self-controlled, and may join or leave
the system casually without restriction as to ownership or
origin [16].

Trust models can protect systems from attacks and threats
that will make the system vulnerable and endangered [17].
Current trust management solutions, however, are often
business-specific and focus on either defending against
specific attacks or identifying and/or isolating malicious
nodes [18], and as such can be considered as assum-
ing a closed system. Questions remain about their abil-
ity to cope with the open-world settings and the highly
dynamic environment of open microservices systems. Pre-
vious research, such as [18], has discussed the weaknesses
of centralised-controlled microservices trust models in open
environments where one controller is responsible for man-
aging trust for all the microservices in the system: i) the
system will be compromised if there is only one controller
that manages trust for the system and that controller itself
becomes compromised; ii) it is difficult to choose a single
controller that is approved by all the components; and iii) the
arbitrary joining and leaving of microservices brings diffi-
culties to the system management that the controller needs
to perform. This type of analysis motivates our work on
trust management in open microservices systems to answer
a number of research questions. To begin with, to what extent
can existing microservices trust models, usually designed for
a specific area, fully support trust management within open
systems? If they cannot, what are the desirable qualities for
effective open microservices trust models? Finally, what is a
solution that can fully support the trust management of open
microservices systems?

The primary contributions of this paper are:
• Reviewing the state of the art in microservices trust
management;

• Proposing a novel classification for microservices trust
models;

• Identifying the limitations of existing microservices
trust models under the setting of open environments;

• Proposing a set of qualities that microservices trust
models should have, in order to be applicable to open
systems; and

• Examining the characteristics of existing microservices
trust models using the proposed qualities.

The rest of the paper is organised as follows: Section II
gives a literature review on microservices trust management.
Section III identifies limitations of existing trust models when
being applied within open systems. The desirable qualities
that open microservices trust models require is proposed
in Section IV. The proposed qualities are then applied to
the selected existing trust models in Section V. Finally, the
conclusion and future work are stated in Section VI.

II. LITERATURE REVIEW
There has been a long-standing trend in the software engi-
neering industry to decompose large-scale systems into
smaller components in order to promote ease of development
and ease of deployment. Widespread industry adoption of
Object Oriented Programming is a clear example of this
trend. Other approaches have been proposed to greater or
lesser degrees of adoption, for instance Agent Oriented Pro-
gramming [19], Aspect Oriented Programming [20], Web
Services [21], Component-Based Systems [22] and combi-
nations of these [23], [24].

In recent times, Service Oriented Architectures (SOA),
specifically those based on Microservices Architectures
(MSA) have come to dominate the landscape for modern
large-scale software systems. The following sections outline
these architectural approaches, along with the consequent
considerations in the context of open systems, and the impli-
cations for trust management.

A. SERVICE-ORIENTED ARCHITECTURE
Service Oriented Architecture (SOA) is a paradigm for organ-
ising and encapsulating pieces of functionality as individ-
ual services, making them available over a network to be
accessed through defined interfaces, and integrating them
into business solutions [25]. According to the definition given
by Erl [26], services inside an application should: i) share
the same contract design standard; ii) be loosely coupled;
iii) only share essential information; iv) be reusable; v) be
autonomous; vi) be stateless; vii) be discoverable; and
viii) be composable.

Historically, one of the most common ways to imple-
ment SOA applications has been Web Services. According
to the definition given by W3C Web Services Architecture
Working Group in 2004, ‘‘A Web service is a software sys-
tem designed to support interoperable machine-to-machine

VOLUME 11, 2023 28841



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards’’ [27].

B. MICROSERVICES ARCHITECTURE
The Microservices Architecture (MSA) represents the state
of the art in current large-scale software development [28].
It is an extended notion of Service-Oriented Architectures
(SOA) [5]. Microservice instances should be fine-grained,
and should be ‘‘single-responsibility units’’ [6]. In academia,
there has not yet been a consensus as to the tenets of microser-
vices. There are some tenets, however, that most researchers
tend to agree on, such as bounded context, small size, service
independence, scalability, isolated state, elasticity, autonomy,
and loose coupling [5], [6], [29], [30], [31].

C. PRINCIPLES OF OPEN MICROSERVICES SYSTEMS
Open systems can be described as systems that run in open
environments. The term ‘‘open’’ implies that [16]:

• The components of the system (i.e., microservice
instances) should be autonomous. In other words, the
instances should function under their own control and
governance.

• The components of the system can be heterogeneous,
which means that the instances within the system can
be designed, constructed, or implemented in different
manners and languages.

• The environment can be dynamic: microservices can
behave arbitrarily, and they may join or leave the system
randomly.

Therefore, compared to microservices systems that are
built for a specific area with finite components and are less
dynamic, building open microservices systems requires addi-
tional due diligence in terms of autonomy, interoperability,
scalability, elasticity, loose coupling, service independence,
isolated states, granularity, and robustness.

D. MICROSERVICES TRUST MODELS
Microservices security is vital, especially when many IT
companies are delivering their businesses with microser-
vices [32]. The establishment of trust between individual
microservices is one of the most critical security prob-
lems [10]. Inside a microservices system, if a microservice
was attacked and controlled by a malicious actor, it would
not only compromise itself but also have the potential to
cause the entire system to fail. Therefore, microservices
systems need a trust model to monitor the connection and
establish trust between individual microservices in order to
limit the potential for trust-related attacks [33] and system
damage [29].

The MSA is an extension of SOA and has become a
preferred solution for enterprises compared to SOAs based
on Web Services [2]. Web Services, however, have a longer

history, and the literature related to trust in Web Services
architectures is consequently richer. It is therefore instructive
to learn from previous Web Services trust models. In this
section, some Web Services trust models will also be intro-
duced, with a view to analysing the extent to which their
characteristics are applicable to MSAs.

As microservices trust management is a relatively new
area, there has yet to be a systematic method for trust model
classification. However, categorising trust models into dif-
ferent classes facilitates researchers to know more about
the commonalities and differences between them. This also
facilitates the examination of the performance of existing
trust models in open environments. A contribution of this
paper, therefore, is to propose four categories within which
existing microservices trust models may be grouped: Zero-
trust-based, Socio-based, Composition-based, and Control-
based. These are defined as follows:

• Zero-trust-based: Zero-trust-based models assume that
microservices inside the systems are always hos-
tile. They are designed based on zero-trust networks,
in which all participants are similarly assumed to be
hostile. Both external and internal threats exist on the
network at all times; trust in a network cannot be decided
merely by network locality; all the actors (including
devices, users, and microservices) and their every action
must be authenticated and authorised; and policies must
be dynamic and calculated using multiple sources of
data [34].

• Socio-based: Socio-based trust models regard a MSA
system as a society, and each microservice within the
system is a member of that society. The trust score of a
microservice is a reflection of how other microservices
inside the system think about this microservice based on
their own behaviour.

• Composition-based: Composition-based trust models
see a microservice as a member of a ‘‘solution’’: a
group of microservices that form an overall service that
is provided to trusters to satisfy their requests. After a
solution has handled the request from the truster, it will
be rated. Based on a decomposition algorithm that the
trust model uses, each microservice inside the solution
will be assigned a trust score according to the overall
trust score of the solution.

• Control-based: Control-based trust models man-
age trust authorisation or trust-based microservices
selection using the same logic as control models.
To prevent a microservice from being abused by other
(compromised) microservices, a microservices sys-
tem needs to take control of inter-service access or
the traffic (information flow) within the system. The
approaches used to take over control of access or traffic
are called control models [35]. Control models facil-
itate building trust in a way that is decentralised and
secure.

The following sections discuss specific examples of trust
models that fall under these four identified categories.

28842 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

FIGURE 1. A simple structure of zero-trust architecture (from [37]).

1) ZERO-TRUST-BASED
In the context ofMSA, adopting zero-trust models means that
each request must be authenticated and verified at the entry
point. All service-to-service interactions must be monitored
to support trust authorisation [36].

Figure 1 illustrates a simple structure of a zero-trust archi-
tecture. This architecture contains five main components:
Subject, Resource, Policy Decision Point, Policy Enforce-
ment Point and Supplement.

In this structure, a Subject is a user or microservice request-
ing access to enterprise resources. A Resource, as in the
context of MSA, can be either a piece of data or another
microservice. A Policy Decision Point is responsible for
deciding whether trust can be established between a Subject
and the Resource it requests. This consists of two minor com-
ponents: Policy Engine and Policy Administrator, which are
responsible for decision-making and communication man-
agement. When a subject intends to access a resource, it will
send its request to the Policy Enforcement Point. This then
forwards the request to the Policy Decision Point. After the
decision is made, it then issues a command back the to Policy
Enforcement Point to establish or refute the trust between the
subject and the resource. The Policy Decision Point makes
its decisions based on the Supplement. The Supplement helps
to provide useful information to the Policy Engine for more
accurate and correct decisions and to achieve higher system
security.

DeCusatis et al. [38] described a steganographic over-
lay zero-trust approach, which was a combination of trans-
port access control (TAC) and first-packet authentication.
Every network session was authenticated independently at
the transport layer before any further actions. Explicit trust
was established by authenticating network identity tokens
on the first packet of a TCP connection and applying a
security policy. The adoption of gateways assured that any
response to unauthorised packets would be blocked, and
only trustworthy users could get access to the protected
resources.

Zaheer et al. [39] proposed eZTrust, a network-
independent perimeterisation approach for microservices.
Perimeterisation is an approach based on building a fire-
wall for the system [40]. eZTrust shifted perimeterisation
targets from network endpoints to workload identities that are
defined as a set of authentic contexts tied to the microservice
workload. Authentic contexts are trusted contexts that are
collected from trusted infrastructure or trusted software pack-
ages (e.g., that have been digitally signed or sourced from
official repositories). Inside eZTrust, there is a central coor-
dinator (orchestrator) that listens to all the events emitted by
any local transaction between microservices and triggers the
next local transaction in a different microservice based on the
incoming event [41].When the orchestrator receives a packet,
it will decode the sender-side contexts and perimeterise them
to the recipient-side context to authorise the interaction in a
purely network-independent fashion.

In any discussion of MSA technologies, it is important
to consider their use in industry. Companies tend to use
technologies such as Google Kubernetes Engine (GKE)1 and
Istio2 to develop their MSA systems. To the extent to which
industry has implemented trust models in their systems, they
have tended to adopt a zero trust approach, based on the
principles outlined above.

GKE provides a managed environment to deploy, manage,
and scale containerised applications using Google infras-
tructure. Istio is a Service Mesh, consisting of two compo-
nents: the data plane and the control plane. The data plane is
the communication between services. Proxies are deployed
to track and control the communication between microser-
vices. The control plane takes the desired configuration and
dynamically programs the proxy servers, updating them as
the rules or the environment change. Istio offers an auto-
matic implementation of Mutual Transport Layer Security
(mTLS) between microservices, which allows connections to

1https://kubernetes.io/
2https://istio.io/

VOLUME 11, 2023 28843



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

be encrypted and the services to be mutually authenticated.
This can be used to enforce authorisation policies centrally
managed by the Control Plane. Thus, Istio can be used as a
platform upon which to build a Zero Trust Architecture [42].

Commercial service providers, such as Hashicorp,3

Cyolo,4 Forcepoint,5 etc. also provide zero-trust solutions.
Industry standard technologies have also been adopted

to realise zero-trust models in the academic sphere.
Rodigari et al. [43] performed experiments whereby a
zero trust implementation based on Istio was successfully
deployed in various Kubernetes platforms, with a view to
minimising latency and system resources. Scoppetta [42]
upgraded a zero-trust-based system implemented with Spring
Boot andMicrosoft Azure with Istio. The Istio-based deploy-
ment maintained zero trust but provided greater visibility of
traffic than the previous system that had been based on JSON
Web Tokens.

Zero-trust models are adaptive: microservices and the users
of the systems are continuously producing new information.
The contexts that the systems are in and the structure of
the systems can also be changing. Zero-trust models need to
adjust and adapt automatically to fit the changing contexts
or the influences of new information [44], e.g., the features
that microservices demand. This can ensure that the trust
between each microservice is up to date, which can support
the dynamism of open MSA systems. However, the authenti-
cation process is often resource-intensive and will be costly,
especially for open systems.

2) SOCIO-BASED
Socio-based trust models can be subdivided into two sub-
types: blockchain-based and reputation-based.

a: BLOCKCHAIN-BASED
Blockchain has been incorporated into some trust models.
Trust is only established between peers. Service Level Agree-
ments (SLA) and/or Smart Contracts (SC) serve as the foun-
dation for the expected service that the truster should receive.
SLA is a type of performance-based contract. The desired
performance of the trust is enforced by a determined ser-
vice level [45]. The performance of the trust often refers to
the expected Quality-of-Service (QoS) standards, which will
further be discussed in Section III-H1 [46]. SC are computer
protocols with a set of commitments that can digitally facil-
itate the dissemination, verification, and execution of con-
tracts among the participants [47], [48]. These are then used
to determine whether trust should be established between
two microservices, combined with the actual performance of
services.

Figure 2 shows an abstract architecture of blockchain-based
trust models. Usually, a system using a blockchain-based
trust model contains at least four layers: Application Layer,

3https://www.hashicorp.com/solutions/zero-trust-security
4https://cyolo.io/zero-trust-ot/
5https://www.forcepoint.com/product/ztna-zero-trust-network-access

FIGURE 2. An abstract architecture of blockchain-based trust models.

Blockchain Layer, Decision Layer, and Resource Layer. The
Application Layer is the interface that receives requests from
users who wish to interact with the system. The Blockchain
Layer is in charge of verifying the SLA/SC of microservices.
A blockchain layer allows knowledge that was gained through
previous interaction between microservices to be used to
evaluate the trust between microservices. The data collected
in the Blockchain Layer will then be sent to the Decision
Layer, where the system makes a determination as to the
trustworthiness of each microservice. The Resource Layer
that manages all the resources that are involved in the sys-
tem (e.g., infrastructure, microservices, databases, etc.). The
design of each layer may vary between different trust models.

Kochovski et al. [48] presented a blockchain-based trust
management architecture for the DECENTER Fog Comput-
ing Platform. The system comprises four layers: Applica-
tion Layer, Blockchain Layer, Edge-to-Cloud Orchestration
Layer, and Decision-Making Layer. The Application Layer
is the entry point for users who wish to interact with the
system. The Blockchain Layer is built on Ethereum. It con-
tains two important components: Smart Contracts and Smart
Oracle. In this model, transactions can be assessed by the
Smart Oracle in advance before assessing it on-blockchain.
The Edge-to-Cloud Orchestration Layer contains infrastruc-
tures for the deployment of containerised microservices and
data, Quality of Service (QoS) monitoring of the infras-
tructures and Internet of Things devices. The data received
on this layer is passed to the Decision-Making Layer. The
Decision-Making Layer is responsible for trustworthiness
evaluation and trustee selection. It uses a Markov probabilis-
tic decision-making method to rank the infrastructures. The
infrastructure with the highest ranking will be considered a
trusted infrastructure and recommended to the user.

Ruan et al. [49] introduced a multi-domain heterogeneous
resource trust management architecture. This model adopts a
consortium blockchain network for trusted resource sharing
and transaction, while using virtual technology tomitigate the
heterogeneity of multi-domain resources, with a differential

28844 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

evolution algorithm to support resource scheduling. In this
model, the trustworthiness of microservices was verified at
the heterogeneous edge resource integration layer of the
blockchain. When a new microservice joins the system, it is
virtualised as node. The node needs to upload its registration
information to the blockchain, including its name, location
and the resources that it is willing to share. After receiving
the registration request from the virtual node, the smart con-
tract will verify the information. Verified nodes will then be
considered to be trusted, and registered in the blockchain.

Blockchain-based trust models have also been developed
with Web services in mind, including: Web Services Trust
Ontology [50], a collaborative filtering algorithm called
Trust-Based Service Recommendation [51], a collaborative
Service Level Agreement and Reputation-based Trust Man-
agement solution for federated cloud environments [52], and
a trust evaluation model of Web Services based on small-
world networks [53].

The adoption of SC/SLA in Blockchain-based models
provides the insight that in microservices systems, the trust
of one microservice can be shared with all microservices.
In other words, trust can be considered to be universal.

b: REPUTATION-BASED
Reputation-based models compute trust values for microser-
vices based on the past behaviours of services and the ratings
that other microservices have previously given to them.

Azarmi et al. [54] provided a solution for end-to-end secu-
rity auditing in SOA (Figure 3). The proposed security archi-
tecture introduced two new components called taint analysis
(a module that monitors the runtime activity of services and
inspects the information flow between services) and a trust
broker (a trusted third party responsible for maintaining a
list of certified services, evaluating the trust level of a given
service, and evaluating the appropriateness of service invoca-
tions). Microservices are labelled as ‘‘certified’’, ‘‘trusted’’,
or ‘‘untrusted’’ according to their trust score. Microservices
with the same trust label will be allocated to the same
domain. The trust broker is used to return the trust level of
the microservices that are selected by the user and evaluate
the trust level of microservices using feedback from the
taint analysis module. The taint analysis module monitors

FIGURE 3. Architecture proposed by Azarmi et al. [54].

the activity of services during runtime, tracks traffic, and
identifies violations. The record in the taint analysis module
is passed back to the trust broker after each interaction to
calculate the trust of the service.

Kravari and Bassiliades [55] introduced a social
agent-based trust model for the Internet of Things (IoT),
adopting microservices architectures called StoRM. StoRM
indicates three main types of IoT characters: entities, ser-
vices, and devices. A Multi-agent system (MAS) approach
was used to implement the microservices as part of a MSA.
The trust between the agents is calculated based on the
truster’s ratings of a trustee in terms of response time, validity,
correctness, cooperation, QoS, and availability. Also, LOCA-
TOR, a locating rating mechanism that makes use of social
graphs and P2P networks, was adopted to encourage agents
to make trust recommendations. The more recommendations
that an agent makes, the heavier the weight its ratings will be
assigned when calculating an agent’s trustworthiness. StoRM
also took into account the dynamism of ratings; thus, it would
discard outdated ratings.

In the Web Services domain, Reputation-based trust mod-
els include: a model to manage trust and reputation using
Web Service Modelling Ontology in a P2P environment [56],
REGRET [57], a Bayesian network trust and reputation
model [58], a QoS-aware reputation-based trust model that
leverages the correlation information among various QoS
metrics [59], Total Trust Evaluator Framework [60], a TOP-
SIS (Technique for Order Preference by Similarity to an
Ideal Solution) evaluation scheme for cloud service trust-
worthiness combining objective and subjective aspects [61],
RATEWeb [62], and TRUSS [63].

Reputation-based trust models emphasise the social char-
acteristics of open MSA systems. However, this also gives
malicious actors more opportunities to attack the system or
other microservices.

3) COMPOSITION-BASED
Composition-based trust models rate the trust score of the
entire service that the system provides to the truster and then
uses a decomposition strategy to compute the trust score of
each microservice inside the overall service.

Adewuyi et al. [64] proposed SC-TRUST, which is a
trust model designed especially for service compositions in
the SOA-based IoT context. Instead of calculating the trust
value of each microservice individually, SC-TRUST calcu-
lates their trusts using composition, aggregation, and decom-
position. After receiving the request and trust criteria prefer-
ence from the user (service requester), underlying services
are assessed on those trust criteria, such as accuracy and
response time, and partial trust scores are assigned. A com-
posed solution is then formed according to the requirements
of the request. The sum of the partial trust score should be
higher than the threshold set by the user. The threshold is
the minimum partial trust score that the user considers to
constitute a trustworthy solution. After this interaction, the

VOLUME 11, 2023 28845



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

consumer rates the solution, and the overall trust score is
decomposed into the trust score of each microservice using
a weighted algorithm.

The approach of Azarmi [65] is that a microservice’s trust
value should inherit from all the other services that have direct
or indirect interaction with it. To this end, two trust algo-
rithms were introduced: Coarse-Grained Global Algorithm
and Graph-Reduction Global Algorithm. Both algorithms
calculate trust using graph-based composite trust schemes.

FIGURE 4. A simple graph-based composite trust architecture.

Figure 4 illustrates a simple service composition graph
between microservices. To calculate a microservice’s trust
value using the Coarse-Grained Global Algorithm, the algo-
rithm uses the microservice as the entry node and searches
for all the other nodes (services) that can be retrieved through
the arcs to create the service composition graph. For example,
to compute the trust of microservice B, B is the entry point
of the graph. Then the trust scores of all the nodes that can
be retrieved with the arcs will be included to compute the
overall trust of B (i.e., C, D, E, and F). After getting the trust
values of all the relevant nodes within the graph, it calculates
the trust value of the microservice based on predefined strate-
gies. For the Graph-Reduction Global Algorithm, instead of
capturing the structure of the service graph, it is based on
graph abstraction. It replaces a basic topology in a graph by a
node (service) with an equivalent trust value and weight, and
gradually turns a composite service graph into a single node
with a trust value. The calculation of the trust value of a node
is the same as in the first algorithm.

Composition-based Web Services trust models include a
trust evaluation method for collaborations of data-intensive
services [66].

Composition-based trust models can be used to calcu-
late trust in closed MSA systems. However, the components
inside open systems can be different at any time, and the
organisation of components is not fixed. Using composi-
tion to infer trust values for microservices may not be up-
to-date as the organisation of components can be changed

immediately after a trust value is inferred, and the form of
a service graph or a trust solution may vary.

4) CONTROL-BASED
Control-based models compute or establish trust between
microservices with access models or traffic control models.

Pasomsup and Limpiyakorn [67] presented a design of the
HT-RBAC (Hierarchical Control Role-Based Access Con-
trol) model. The design was based on RBAC (Role-Based
Access Control) models. Inside the system, each entity is
assigned with a role. These roles have various hierarchies.
Roles with higher hierarchies have more access to the data.
Thus, in HT-RBAC, microservices with different roles have
different weights when computing trust. This model also
incorporates a Security Manager into the model to help
authenticate, authorise, and identify a user’s access control.
Moreover, the flow of trust in each service is bound to the user
to avoid Cross-Site Request Forgery (CSRF) or Cross-Site
Scripting (XSS) attacks.

Skandylas et al. [18] proposed AT-DIFC, a DIFC (Decen-
tralised Information Flow Control) model extended with trust
and adaptation capabilities to enforce security in open dis-
tributed systems. They proposed and formalised a DIFC
Model that used trust between principals to enforce infor-
mation flow policies in microservices systems. They also
introduced the concept of adaptive trust architectures that
could be dynamically adapted to meet different stakeholder
goals by breaking down the request into a group of contexts
and comparing them with the contexts where microservices
could be trusted (trust context). The trust of eachmicroservice
is based on the context that it is in, the number of messages
that have been successfully exchanged in its actions, and its
conformance with security policies. Trust contexts can be
split and merged, so that the computation of trust can adapt
to different requests.

Control-based models heavily rely on the control models
that they are built upon. This makes the choice of control
models crucial and becomes more difficult in open environ-
ments because the traffic of data will be heavier and the
number of actors inside the systemwill be higher. The control
models must be strong enough to take control of the data
exchanged during all the interactions and resist the challenges
that they will encounter due to the potentially unlimited
expansion of open systems.

III. MICROSERVICES TRUST MODELS IN THE CONTEXT OF
OPEN ENVIRONMENTS
Since existing microservices trust models tend to be
domain-specific or attack-specific, it is important to examine
their compatibility with open systems.

As discussed in Section II-C, open microservices systems
have greater requirements in terms of autonomy, interoper-
ability, scalability, elasticity, loose coupling, service inde-
pendence, isolated state, granularity, and robustness when
compared to more closed systems. Thus it is essential that
trust models should also take these principles into account.

28846 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

After identifying the microservices trust models mentioned
in Section II-D, in this section, we examine these mod-
els, bearing in mind the characteristics of open systems,
and identify a number of scenarios of note where difficul-
ties could arise from deploying these trust models in open
environments.

A. TRUST BOOTSTRAPPING
Trust bootstrapping helps establish an initial trust value for
newcomers, which is essential in the context of an open
system where microservices are free to join or leave the
system at any time. A comprehensive trust bootstrapping
approach enables the newcomer microservice to be integrated
into the system and recommended to trusters. Some works
have mentioned assigning an initial value to the newcomer
microservice but have not provided a systematic approach
to trust initialisation. Skandylas et al. [18] mentioned that
the initial trust of the newcomer could be decided based on
its context, but did not give any details on how to initiate
trust with contexts. Azarmi [65] mentioned that a newcomer
microservice should be assigned a value that is between
0 and 1 as its initial trust but did not introduce how to assign
such a value.

B. EFFECT OF MISSING MICROSERVICES
In some socio-based and composition-based trust models,
a truster service i uses trust-related knowledge from other
microservices to infer its trust towards a microservice j, with
which it has not previously interacted. This is described as
a ‘‘trust chain’’ [18], [55], [65]. However, if any microser-
vices in the chain are missing (for example, as a result of
operational failures or the actions of the developers), then
it becomes a question of whether the inferred trust i has
to j is reliable or not. Another situation arises with models
that use the Markov probabilistic decision-making method
to decide the recommendation [48]. The total number of
possible solutions is one of the parameters for trust evalu-
ation. For open systems, microservices join and leave arbi-
trarily, so the total number of possible solutions is constantly
changing. Since one of the parameters in the calculation is
never stable, the result (i.e., the trust score) will also vary,
which undermines the ability of the trust score to stabilise
and converge. Another situation arises where other microser-
vices leave the system immediately after the trust score of
microservice i is calculated. The total number of possible
solutions will be affected as the options decrease, resulting
in the trust score for i potentially not reflecting its actual
trustworthiness.

C. TRUST MANIPULATION
In systems that manage trust using ratings and recommenda-
tions, microservices can manipulate the trust value of entities
by controlling their ratings ormaking false recommendations.
For example, in StoRM, microservices can make recommen-
dations to trustermicroservices [55]. The system assumes that
all recommendations are based on good intentions. Whereas

that assumption may hold in many closed microservices-
based systems, it does not hold in open systems where
malicious microservices can then manipulate trust by making
false recommendations. This can be done either individually
or via coordinated groups, which may collude to recommend
a malicious microservice in order to artificially build its
reputation and cause other microservices to trust it. Service-
composition-graph-based models (e.g., [65]) also face this
issue. As it is a graph-based trust model and the trust of the
truster relies on its trustees, the truster microservice can give
all its trustees high ratings to improve its own trust score.

D. COMPENSATED TRUST
Trust compensation can commonly be seen in composition-
based models as the computation of trust needs to go through
the composition and decomposition processes. In [64], when
the truster gives ratings, it rates the entire solution that it has
offered instead of rating individual microservices separately.
The trust score of each microservice is computed using a
weighted decomposition algorithm based on the overall trust
score given to the solution that it contributes to. Although the
decomposition algorithm is weighted, there is still a chance
for a microservice to be assigned a trust score that is higher
than its actual trustworthiness because other microservices
within the solution are very trustworthy, and vice versa.
In [65], because of the graph-based algorithm, the trust scores
of a microservice i’s previous trustees play an important role
in the computation of its own trust. Therefore, there is a
chance that i itself is not trustworthy, but because its trustees
have high trust scores, i can still have an artificially high trust
score.

E. EFFECT OF SINGLE FAILURES
As with any complex system, failures are detrimental to
microservices systems, and so failure is one of the most
direct metrics to justify whether a microservice is trust-
worthy or not. Sometimes a microservice might fail due
to temporary factors (e.g., functional error, network outage,
or misunderstanding). Thus, an argument can be made that
microservices should not necessarily be considered untrust-
worthy just because of a single failure. Not all trust models
exhibit this point. In [38], microservices will be considered as
‘‘untrustworthy’’ for single failures during verification. The
trust computation algorithm in [65] will decrease the trust
score of microservices significantly after any untrustworthy
behaviour.

F. DYNAMIC TRUST
Trust should be dynamic [17], which means the trust score of
a microservice should only reflect its trustworthiness over a
certain period of time. For example, StoRM [55] introduced a
discarding algorithm for the truster when calculating the trust
score, which ensures that the trust computation can proceed
with the most promising (possible trustworthiness) and more
recent ratings.

VOLUME 11, 2023 28847



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

G. MICROSERVICES LOCK-IN
Most microservices trust models recommend the microser-
vice with the highest trust score to the truster. In an open
environment, the system might receive the same request
for trusters many times and always recommend the same
microservice that provides a service that matches the truster’s
requirements, while having the highest trust score. This not
only raises the risk of overloading the trusted service but
also stops trustworthy microservices whose trust scores are
not the highest from being recommended and invoked, and
consequently building up trust.

H. RELIANCE ON SUBJECTIVE RATINGS
Some implementations use ratings as the basis to compute
trust [18], [67]. Ratings are given by trusters: they can be
subjective or even manipulative. To avoid this kind of sub-
jectivity, many trust models incorporate some objective met-
rics into trust computation, for example, Quality of Service
(QoS). Although QoS is not commonly used in microservices
trust models, many Web Services trust models use QoS to
compute trust more objectively [50], [51], [52], [56], [58],
[59], [61], [62], [63], [68].

1) USING QoS in TRUST MODELS
Quality of Service (QoS) refers to the performance of a web
service in certain aspects [69]. It can typically be monitored
using third-party tools. Many trust models include QoS when
calculating the trust score. QoS has been discussed exten-
sively in the literature and has been seen as the major criterion
for selecting web services to invoke [70]. Different trust
models utilise different QoS metrics and different methods
of QoS monitoring. Tables 1 and 2 list the QoS metrics that
have been adopted in selected microservices trust models and
web services trust models respectively.

Combining the QoS metrics given by W3C [71] and the
most frequently-included QoS metrics from Tables 1 and 2,
we identified the following QoS metrics that are promising
for use within a trust framework for microservices-based
open systems: availability, latency, cost, throughput, and
reliability.

These metrics are important for the trusters, or the stake-
holders, of the systems. Although some of them do not
have direct connections with trust computation, they are
good perspectives from which to evaluate the performance
of microservices and can indicate some clues as to the prob-
ability of the service’s ability to be sufficiently reliable so as
to be trusted by the truster in the future:

• Availability represents the level to which a microservice
is in an operable and committable state [55]. Availability
is computed based on the time that a microservice is up
and ready [59]. It can be calculated by dividing the time a
service is available by the total service time. Availability
ensures that trusters can find the trustees. Microservices
cannot provide any services to the trusters unless they
are available, which is part of the definition of trust.

• Latency represents the time within which trusters can
have their requests satisfied. If a microservice has high
latency, there is the possibility that it would become
overloaded or that it is experiencing some kind of error,
which would affect its ability to provide the expected
service during a given time interval.

• Cost is the resource usage during service execution time,
such as CPU utilisation, storage, etc. It is important for
the stakeholder, as this is closely related to the resources
that theywill spend on the system. It is also important for
the maintenance of the system. Cost is used to represent
the consumption of resources; it does not affect the
behaviour of microservices directly, but in the long term,
it has the potential to impact latency if the load on the
service increases in the future.

• Throughput is the number of requests that the microser-
vice instance has served in a certain period of time. It can
be calculated by dividing the number of service requests
served by the total service time. This can be used to
refer to the number of requests that a microservice can
complete during a certain time interval. If a microservice
has low throughput, it could be a sign of overload or
not being able to provide services and meet require-
ments within a certain time period. This can affect
the trust between microservices. Besides, microservices
with higher throughput tend to be more scalable and
fault-tolerant [72], which facilitates the management of
open systems.

• Reliability is the ratio of successful responses to all
responses that a service instance provides. It ensures
that microservices can always provide their required
functions under stated conditions for a specified time
interval [61]. Reliable microservices will provide the
correct services as their descriptions indicate and can
meet the requests of the trusters. This is strongly related
to our definition of trust.

IV. QUALITIES OF TRUST MODELS FOR OPEN
MICROSERVICE SYSTEMS
In Section II-C we have discussed some principles that will
need particular attention when building open microservices
systems, and in Section III we identified the limitations that
existing microservices trust models have in the context of
open environments. Based on this, we now propose some
qualities that microservices trust models designed for open
microservices systems should exhibit, as follows:

• Have a comprehensive process for trust bootstrap-
ping: The trust model should have a complete process
for how the trust value for newcomer microservices that
join the system can be initialised.

• Be resilient to missing microservices: For open sys-
tems, it is very common for microservice instances to
leave the system (in addition to microservices who are
missing due to failure). Missing microservices can have
an impact on the actual trustworthiness of microservices
or trust score. The trust model should not be affected

28848 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

TABLE 1. Microservices trust models that consider QoS.

TABLE 2. Web services trust models that incorporate QoS.

if a microservice instance leaves the system, and the
trust value of each microservice should reflect its actual
trustworthiness.

• Be resistant to trust manipulation: Open systems have
a higher risk of being exposed to trust manipulation as
microservice instances can join the system arbitrarily,
with no guarantees as to ownership or benevolence.
Therefore, the trust model should be resistant to trust
manipulation: this could be a penalty scheme, a moni-
toring mechanism, or other measures.

• Compute the trust value of each microservice indi-
vidually: Because of the dynamism that open sys-
tems have, microservices can join or leave the system
freely. It should be possible to compute a trust value
for a microservice independently of others, so that its
trust value will still reflect its actual trust if any other
microservices in the trust chain or composition leave the
system. Trust chains or compositions can be attributed
an independent trust score that captures their overall
trustworthiness, but as these can be created and bro-
ken dynamically, this should be distinguished from trust
scores of individual services.

• Allow failures to some extent: Failures are always con-
sidered detrimental to the operation of systems. Despite
this, if a microservice failed to provide service on one
occasion, it does not necessarily mean it is completely
untrustworthy; it could be a runtime or environmen-
tal error that will not be repeated. The trust model
should give microservices with poor performance sev-
eral chances to be invoked before labelling them as
‘‘untrusted’’.

• Use trust score to reflect recent trustworthiness:
Open systems are dynamic, and so is the trust value of
each microservice. In order to bias the system towards
more recent interactions, the weight associated with
each record should decay over time when computing
the trust of microservices. This reduces the impact of

historical failures or successes on the microservice’s
trustworthiness far into the future.

• Give all microservices chances to perform: It is very
common for trusters to pick the candidate trustee with
the highest trust value and continue to pick the same one
for future interactions. This can potentially lead to an
overload of the microservice with the highest trust value,
without using other trustworthy services of a similar
nature whose computed trust value is insignificantly
lower. Another issue is that if the microservice with
the highest trust score leaves the system, the truster
will need to select a new trustee. But since it has little
information on the other candidates (due to a dearth
of interactions with other trustees that have not been
selected), it is difficult to decide which microservice
should be the new trustee. Giving all candidates a chance
to be selected allows the truster to have experience with
all of them, and can speed up the process if the candidate
with the highest trust score leaves the system, since other
microservices also accumulate a history of interaction
from which trust can be more reliably computed.

• Use objective metrics (e.g., QoS) in trust calculation:
The computation of trust should be incorporate objec-
tive measures, and not only rely on subjective assess-
ments from potentially-unreliable microservices. As we
have discussed in Section III-H1, QoS has been widely
adopted in many web services trust models to provide an
objective perspective for trust computation. Therefore,
adopting QoS as an aspect of trust computation can
ensure that the trust score is more objective compared
to purely relying on ratings given by trusters.

V. EXAMINING TRUST MODELS WITH THE QUALITIES OF
OPEN MICROSERVICES TRUST MODELS
Having identified the desirable qualities of microservices
trust models for open systems in the previous section, we next
examine the degree to which the trust models that were

VOLUME 11, 2023 28849



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

FIGURE 5. QoS metrics adopted in selected trust models.

TABLE 3. Mapping selected microservices trust models to the qualities that are desired for open systems.

studied in Section II-D exhibit each of these qualities. The
results of this examination are summarised in Table 3.
For each quality, a checkmark (✓) denotes that the rel-
evant model exhibits that quality. The box is left empty
otherwise.
Quality 1: Trust Bootstrapping Some of the trust models

studied lack a comprehensive approach to handle new-
comer microservices and bootstrap trust.
Zero-Trust-based models [38], [39] can be said to have
a ‘‘bootstrapping process’’ as the theory of Zero-Trust
is to distrust all microservices by default. Verification,
authentication, and authorisation are needed before the
establishment of any interaction between trusters and
trustees.

For both blockchain-based models [48], [49], the infor-
mation of the newcomer microservice is verified before
registration using a smart contract. Registered microser-
vices are considered as ‘‘trusted’’ and can be requested
by other microservices. Thus, the trust can also be con-
sidered bootstrapped.
Some trust models used a neutral value as the ini-
tial trust of the newcomer microservice. Kravari and
Bassiliades [55] set the range of trust values to [−1,1],
where −1 represents not trustworthy at all and 1 rep-
resents completely trustworthy. The initial trust value
of the newcomer microservice is 0, which is ‘‘trust
neutral’’. Adewuyi et al. [64] set the range of trust
values to [0,1], where 0means completely untrustworthy

28850 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

and 1 means completely trustworthy. The initial trust
value is 0.5.
Although the concept of giving newcomermicroservices
initial values of trust was mentioned in [18], [54], [65],
and [67], none of them outline a detailed process for
setting the initial trust.

Quality 2: Missing Microservices Less than half of the
selected trust models are resilient to missing
microservices.
Zero-Trust-based models [38], [39] are resistant as they
never trust anymicroservice instances and have to repeat
the authorisation and verification process before every
interaction. The trustworthiness of other microservices
will not be affected if any other microservices are no
longer in the system.
The trust value of services is computed based on their
QoS and reputation in [54]. When making recommenda-
tions, the trust model provides a list of all the microser-
vices that meet the requirements, with the selection of
specific microservices to invoke being left to the users.
Thus, it will not be affected by missing microservices.
For the other model types, some use the trust chain
(or trust path) to calculate trust values [55], [64], [65],
[67]. If any node within the chain is missing, the chain
will be broken, and the trust value based on the broken
chain can no longer reflect the actual trust. Kochovski
et al. [48] use the total number of solutions as one of the
parameters for trust calculation. Therefore, if microser-
vices leave the system immediately after calculation,
the total number of solutions will be affected, and then
the actual trustworthiness will differ from the calculated
trust score. Skandylas et al. [18] use ‘‘trust context’’ to
establish trust. The ‘‘trust context’’ is designed based
on the strong trust between microservices provided by
the stakeholders. If the microservices are missing, the
trust context will no longer reflect the actual context,
which will affect the establishment of trust. The rela-
tionships between microservices are considered part of
the description of microservices in [49], which means
that microservices are not fully independent from each
other.

Quality 3: Trust Manipulation More than half of the
selected trust models include measures to be resistant
to trust manipulation [18], [38], [39], [48], [49], [64],
[67]. Zero-Trust-based trust models [38], [39] manage
this by verifying the information of trustees (e.g., the
service that they provide, their APIs, etc.) before every
interaction. Kochovski et al. [48] use smart contracts
in the Blockchain Layer. Each smart contract instance
communicates with external services through registered
APIs with unique API keys. This helps to protect the
system from malicious smart contracts. Smart contract
verification was also used in [49], ensuring that the
microservices in the system can perform as advertised.
The entities within the system are assigned different
roles in [67]. A Security Manager is specially designed

to control the microservices and trust authentication.
A minimum number of messages that are received or
sent by microservices was set as a threshold in [18],
before which the direct trust is presumed to be untrusted.
This helps to guard against the situation where a mali-
cious entity may act non-maliciously during its initial
interactions, in order to build up its trustworthiness, but
then begin acting maliciously at a later time. Direct
trust is given higher weights in [64]. Thus, it helps
trust values be updated reliably and consistently and can
offset the influence of trust manipulation.
StoRM [55] cannot satisfy this quality as it allows
trusters to make recommendations to others. Also, when
trusters give ratings to microservices, they can also
indicate a level of confidence. Malicious trusters can
use this mechanism to make their ratings appear very
confident and recommend untrustworthy microservices
to others. Graph-based trust models introduced in [65])
are not resistant to trust manipulation as the trust value
of each microservice is based on the trust value of
its trustees. Malicious actors can potentially manipu-
late trust by manipulating the trust value of appropriate
trustees. A mechanism against trust manipulation is not
mentioned in [54].

Quality 4: Individual Trust The majority of the selected
trust models do not calculate trust for microservices
individually. Among thesemodels, some use trust chains
to compute trust value, while others do not quantify trust.
The trust of microservices is calculated individually
in [54], without using any underlying trust dependency.
The trustworthiness of each microservice is evaluated
based on its reputation (the feedback that trusters have
given within a particular time interval).
The Zero-Trust-based trust models [38], [39] do not use
the concept of a ‘‘trust value’’, and thus do not attempt
to calculate an individual score for each microservice.
The same condition is found in [49]. The trustworthiness
of each microservice inside the system is decided by
SC verification. Verified microservices will be treated
as ‘‘trusted’’. Microservices can submit their status to
update the verification.
Some trust models used trust path to calculate trust [48],
[55], [64], [65], [67], which means that the trust score
of a microservice reflects not only its own trustworthi-
ness but also the trustworthiness of microservices that
it depends on. The trust of a microservice is computed
with both ‘‘inner’’ trust and ‘‘outer’’ trust in [18]. Inner
trust is the reflection of the trust between the microser-
vices that are in the same trust context as the target
microservice, whereas outer trust refers to microservices
in different trust contexts. Thus, the trust scores cannot
purely illustrate the trustworthiness of microservices
themselves. Although a Security Manager is adopted
in [67] to authenticate, authorise, and identify before
every session, the trust chains betweenmicroservices are
also considered as a factor in determining trust.

VOLUME 11, 2023 28851



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

Quality 5: Allow Failure Several trust models allow
microservices to fail to some extent.
In [55], if a trustee that is stored in the truster’s blocklist
is recommended by a trusted recommender twice, then
the trustee is trusted again. This is to avoid character-
ising the trustee as permanently ‘‘blocklisted’’ due to
temporary misbehaviour (e.g., functional error or mis-
understanding).
In [49], microservices are containerised by docker and
work as nodes to respond to requests. An incentive
algorithm is adopted to reward microservices whose
descriptions in smart contracts match their actual perfor-
mance. If the microservice does what it says it will do,
it will be rewarded with a credit value 1, which can be
used to invoke other microservices. If the microservice
cannot provide the service it says, then its credit value is
calculated as the ratio of the actual amount of resources
provided by the node to the amount of resources it
registered in the system. This should be a value less
than 1. In this case, deception shows no benefits; hence,
as a rational microservice, there is no reason to engage in
such false behaviour. This gives microservices chances
to perform after a single failure while punishing them
gradually if they continue to fail.
Microservices of different trust levels are returned to the
user in [54]. Therefore, the opportunity exists for users
to choose to give an untrusted microservice a chance to
perform. This possibility does not arise in models where
recommendations yield only the most-trusted relevant
microservice.
The number of correct messages that are successfully
exchanged is considered a factor in trust computation
in [18], [48], and [64], which shows that the system
can tolerate a few rounds of failures until the impact
of failures on the trust score becomes significant. In a
similar way, Zaheer et al. [39] allow N context detection
and/or microservices look up failure before dropping a
packet. Therefore, single failures are allowed.
In contrast, some trust models have strong policies to
guard against even single failures. To avoid compromis-
ing the system, trust will not be established between
microservices in [38] if any failure occurs during verifi-
cation. Similarly, Azarmi [65] states that trust should be
dynamic. Whenever a microservice shows any untrust-
worthy behaviour, its trust score will be decreased
significantly.
The main focus of [67] was the authorisation of trust.
They did not introduce their policy against fault toler-
ance. Thus, the tolerance towards single failures was not
mentioned.

Quality 6: Recent Trustworthiness All of the reviewed
trust models can reflect the recent trustworthiness of the
microservice [18], [38], [39], [48], [49], [54], [55], [64],
[65], [67].
As Zero-Trust-based models [38], [39] establish trust
every time before a new interaction, they verify the

trustworthiness based on the real-time information of the
trustee candidates.
For blockchain-based models, the Edge-to-Cloud
Orchestration Layer in [48] is designed to monitor
microservices continuously and collect up-to-date infor-
mation. Collected information will then be passed to the
Decision-Making Layer as the basis to compute trust
and determine the optimal solution. Therefore, all data
relating to trust is updated continuously. Microservices
can submit their information to the blockchain from
time to time in [49]. This allows the verification to be
conducted using recent information.
Among reputation-basedmodels, a discarding algorithm
was introduced in [55] when calculating trust score,
which can proceed with the most promising and more
recent ratings. A similar algorithm was adopted in [54],
where recent feedback has higher weight than past feed-
back. In [65], the trust value of microservices will be
changed after every interaction to reflect their recent
trustworthiness.
Control-based models both satisfy the recency quality:
Trust is established before each session in [67]. This
assures that the trust is verified using recent information.
In [64], which is composition-based, trust scores are
stored and used to guide future interactions; however,
their importance declines over time.
The model proposed by Skandylas et al. [18] shows
deficiency in this quality. Although the basis of trust
is the ratio of successfully exchanged models to total
messages, the number of successful exchanges will be
treated as 0 before certain number of times. This would
affect the accuracy of microservices that recently joined
the system.

Quality 7: Chance to Perform Only one of the trust mod-
els considered gave all microservices with various trust
scores a chance of being invoked by leaving the option to
the trusters: In [54], all microservices capable ofmeeting
the requests of trusters will be returned. Trusters will
then select the trustees, which could be in any trust
level. Some models recommend the microservice with
the highest score [18], [48], [49], [55], [64], [65]. For the
remaining models [38], [39], [67], the main purpose was
to introduce the process of establishing trust between
microservices. They do not contain a recommendation
metric.

Quality 8: Objective Metrics More than half of the
selected trust models included QoS as part of the cal-
culation of trust.
Response time, validity, correctness, cooperation, and
availability are theQoSmetrics included in [55]. No spe-
cific QoS attributes were identified in [48], but the
model addressed a variety of non-functional require-
ments, including Quality of Service (QoS), availability,
privacy, and security requirements. The idea of using
QoS as one of the parameters is also mentioned in [64],
but it does not include specific details. Cost and delay

28852 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

are considered as QoS parameters in [65]. Although not
explicitly labelled as ‘‘QoS’’, [18] uses the number of
messages successfully exchanged as the basis of trust,
which is an alternative objective metric that is closely
related to the definition of reliability. SLA is used for the
evaluation of trust in [54], which can contain constraints
on QoS. Metrics such as latency are used in [49] as one
of the basis to establish trust.
Several existing models do not rely on QoS metrics.
For zero-trust-based models [38], [39], when authoris-
ing the access, the system will compare the compat-
ibility between the requesting trusters and the infor-
mation of the trustees. The requests and information
includes IP address, port, ID, network namespace, etc.
QoS is not required to establish trust. The control-
based [67] authenticates trust based on the information
saved in REST APIs, which does not involve any QoS
metrics.

Compared to other trust models, Zero-Trust-based mod-
els have comprehensive trust bootstrapping processes and
are more resilient to missing microservices. However, they
have little tolerance towards failure, and tend not to give all
microservices a chance to perform.

Socio-based models are more diverse than Zero-Trust-
based models, and thus socio-based models tend to exhibit
more of the identified qualities. However, they generally
lack resistance towards missing microservices, computing
trust individually, and giving all microservices a chance to
perform.

Composition-based models combine QoS to trust compu-
tation, and can reflect recent trustworthiness. However, they
are less strong in terms of the other qualities.

Control-based models are resistant to trust manipulation,
can reflect recent trustworthiness, and can compute trust indi-
vidually. However, their suitability in terms of the other quali-
ties is less obvious. They generally lack a comprehensive trust
bootstrapping process, resistance to missing microservices,
giving all microservices a chance to perform, and objective
QoS metrics.

Table 3 shows that different trust models can meet different
qualities, but that none of them can fulfil all the qualities.
In particular, trust models need to elevate their awareness
on trust bootstrapping, resistance to missing microservices,
individual trust computation, failure tolerance, and giving all
microservices a chance to perform.

VI. CONCLUSION AND FUTURE WORK
The microservices architecture (MSA) is a dominant archi-
tectural style that has been widely adopted in industry.
As with any other distributed systems architecture, trust is
an important topic in MSA systems. The theory of MSA sug-
gests that trust should be established during messaging, and
therefore building a trust model will facilitate the operation
of the microservices system without a trust attack occurring.
In this paper, we have introduced some existing models and

categorised them into four classes: Zero-trust-based, Socio-
based, Composition-based, and Control-based.

Meanwhile, MSA has been acknowledged by some
researchers and companies as a potential solution for open
systems. Nevertheless, the exploration of microservices trust
models still has a long way to go in this context.

In this paper, we studied existing microservices trust mod-
els, identified the characteristics of open systems, and exam-
ined the limitations of existing models with respect to the
characteristics of open systems. Based on these limitations,
we proposed some qualities that trust models should meet
to support the openness of open microservices systems. The
qualities include:

• Have a comprehensive process for trust bootstrapping;
• Be resilient to missing microservices;
• Be resistant to trust manipulation;
• Calculate the trust value of each microservice individu-
ally;

• Allow failures to some extent;
• Reflect recent trustworthiness;
• Give all microservices chances to perform; and
• Use objective QoS metrics in trust calculation.

We also assessed existing microservices trust models using
these novel qualities. The study demonstrated that none of
the existing microservices trust models can fulfil all these
qualities, which means they cannot fully support open sys-
tems. Therefore, there remains a need to propose a novel trust
model that can meet all the qualities that have been identified.
Primarily, this will entail designing a comprehensive trust
bootstrapping process which can make sure that the initial
trust value of newcomer microservices is appropriate, in com-
bination with a trust model that can handle the dynamism of
open systems while computing trust in a manner that allows
for the independence of microservices.

REFERENCES
[1] T. Cerny, M. J. Donahoo, and M. Trnka, ‘‘Contextual understanding of

microservice architecture: Current and future directions,’’ ACM SIGAPP
Appl. Comput. Rev., vol. 17, no. 4, pp. 29–45, Jan. 2018.

[2] V. Raj and S. Ravichandra, ‘‘Microservices: A perfect SOA based solution
for enterprise applications compared to web services,’’ in Proc. 3rd IEEE
Int. Conf. Recent Trends Electron., Inf. Commun. Technol. (RTEICT),
May 2018, pp. 1531–1536.

[3] S. Lee, L. Chan, and E. Lee, ‘‘Web services implementation methodology
for SOA application,’’ in Proc. IEEE Int. Conf. Ind. Informat., Aug. 2006,
pp. 335–340.

[4] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
‘‘Web services composition: A decade’s overview,’’ Inf. Sci., vol. 280,
pp. 218–238, Oct. 2014.

[5] D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, ‘‘Design princi-
ples, architectural smells and refactorings for microservices: A multivocal
review,’’ Softw.-Intensive Cyber-Phys. Syst., vol. 35, nos. 1–2, pp. 3–15,
Aug. 2020.

[6] O. Zimmermann, ‘‘Microservices tenets,’’ Comput. Sci., Res. Develop.,
vol. 32, nos. 3–4, pp. 301–310, Jul. 2017.

[7] P. D. Francesco, I. Malavolta, and P. Lago, ‘‘Research on architecting
microservices: Trends, focus, and potential for industrial adoption,’’ in
Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 21–30.

[8] A. Hannousse and S. Yahiouche, ‘‘Securing microservices and microser-
vice architectures: A systematic mapping study,’’ Comput. Sci. Rev.,
vol. 41, Aug. 2021, Art. no. 100415.

VOLUME 11, 2023 28853



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

[9] P. Dasgupta, ‘‘Trust as a commodity,’’ in Trust: Making and Breaking
Cooperative Relations, D. Gambetta, Ed. Department of Sociology, Univ.
of Oxford, 2000, ch. 4, pp. 49–72.

[10] N. B. Truong, H. Lee, B. Askwith, and G. M. Lee, ‘‘Toward a trust
evaluation mechanism in the social Internet of Things,’’ Sensors, vol. 17,
no. 6, p. 1346, Jun. 2017.

[11] N. Alshuqayran, N. Ali, and R. Evans, ‘‘A systematic mapping study in
microservice architecture,’’ in Proc. IEEE 9th Int. Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2016, pp. 44–51.

[12] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Microser-
vices migration in industry: Intentions, strategies, and challenges,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2019,
pp. 481–490.

[13] L. Sun, Y. Li, and R. A. Memon, ‘‘An open IoT framework based on
microservices architecture,’’ China Commun., vol. 14, no. 2, pp. 154–162,
2017.

[14] J. Parmar, S. Chouhan, V. Raychoudhury, and S. Rathore, ‘‘Open-world
machine learning: Applications, challenges, and opportunities,’’ ACM
Comput. Surv., vol. 55, no. 10, pp. 1–37, Oct. 2023.

[15] L. Baresi, E. D. Nitto, and C. Ghezzi, ‘‘Toward open-world software: Issues
and challenges,’’ Computer, vol. 39, no. 10, pp. 36–43, Oct. 2006.

[16] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Semantics,
Processes, Agents. Hoboken, NJ, USA: Wiley, 2005.

[17] B. Pourghebleh, K. Wakil, and N. J. Navimipour, ‘‘A comprehensive study
on the trust management techniques in the Internet of Things,’’ IEEE
Internet Things J., vol. 6, no. 6, pp. 9326–9337, Dec. 2019.

[18] C. Skandylas, N. Khakpour, and J. Andersson, ‘‘Adaptive trust-
aware decentralized information flow control,’’ in Proc. IEEE Int.
Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS), Aug. 2020,
pp. 92–101.

[19] Y. Shoham, ‘‘Agent-oriented programming,’’ Artif. Intell., vol. 60, no. 1,
pp. 51–92, 1993.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, ‘‘Aspect-oriented programming,’’ in Proc.
Eur. Conf. Object-Oriented Program. Berlin, Germany: Springer, 1997,
pp. 220–242.

[21] L. Richardson and S. Ruby, RESTful Web Services. Sebastopol, CA, USA:
O’Reilly Media, 2008.

[22] A. W. Brown and K. C. Wallnan, ‘‘Engineering of component-based
systems,’’ in Proc. 2nd IEEE Int. Conf. Eng. Complex Comput. Syst.
(ICECCS), Oct. 1996, pp. 414–422.

[23] R. W. Collier, E. O’Neill, D. Lillis, and G. M. P. O’Hare, ‘‘MAMS:
Multi-agent microservices,’’ in Proc. World Wide Web Conf. (WWW),
San Francisco, CA, USA, 2019, pp. 655–662.

[24] D. Lillis, R. W. Collier, M. Dragone, and G. M. P. O’Hare, ‘‘An agent-
based approach to component management,’’ in Proc. 8th Int. Conf. Auto.
Agents Multi-Agent Syst. (AAMAS). Budapest, Hungary: International
Foundation for Autonomous Agents and Multiagent Systems, May 2009,
pp. 529–536.

[25] K. B. Laskey and K. Laskey, ‘‘Service oriented architecture,’’ Wiley
Interdisciplinary Rev., Comput. Statist., vol. 1, no. 1, pp. 101–105,
2009.

[26] T. Erl, SOA Principles of Service Design. Upper Saddle River, NJ, USA:
Prentice-Hall, 2007.

[27] C. Ferris, D. Booth, D. Orchard, E. Newcomer, H. Haas, M. Champion,
and F. McCabe. (Feb. 2004). Web Services Architecture, W3C Note,
W3C. [Online]. Available: https://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/

[28] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, ‘‘Microservices in
industry: Insights into technologies, characteristics, and software quality,’’
in Proc. IEEE Int. Conf. Softw. Archit. Companion (ICSA-C), Mar. 2019,
pp. 187–195.

[29] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and tomor-
row,’’ in Present and Ulterior Software Engineering. Cham, Switzerland:
Springer, 2017, pp. 195–216.

[30] E. Evans and E. J. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Reading, MA, USA: Addison-Wesley, 2004.

[31] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Vienna, Austria: Springer, 2014.

[32] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, ‘‘Smells and refactorings
for microservices security: A multivocal literature review,’’ J. Syst. Softw.,
vol. 192, Oct. 2022, Art. no. 111393.

[33] W. Abdelghani, C. A. Zayani, I. Amous, and F. Sèdes, ‘‘Trust management
in social Internet of Things: A survey,’’ in Social Media: The Good, the
Bad, and the Ugly, Y. K. Dwivedi, M. Mäntymäki, M. N. Ravishankar,
M. Janssen, M. Clement, E. L. Slade, N. P. Rana, S. Al-Sharhan, and
A. C. Simintiras, Eds. Cham, Switzerland: Springer, 2016, pp. 430–441.

[34] G. Evan and B. Doug, Zero Trust Networks: Building Secure Systems in
Untrusted Networks. Sebastopol, CA, USA: O’Reilly Media, 2017.

[35] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, ‘‘Automatic policy
generation for inter-service access control of microservices,’’ in Proc. 30th
USENIX Secur. Symp. (USENIX Security). Berkeley, CA, USA: USENIX
Association, Aug. 2021, pp. 3971–3988.

[36] E. Shmeleva, ‘‘How microservices are changing the security landscape,’’
M.S. thesis, School Sci., Aalto Univ., Espoo, Finland, Dec. 2020.

[37] S. Teerakanok, T. Uehara, and A. Inomata, ‘‘Migrating to zero trust
architecture: Reviews and challenges,’’ Secur. Commun. Netw., vol. 2021,
May 2021, Art. no. 9947347.

[38] C. DeCusatis, P. Liengtiraphan, A. Sager, and M. Pinelli, ‘‘Implementing
zero trust cloud networks with transport access control and first packet
authentication,’’ in Proc. IEEE Int. Conf. Smart Cloud (SmartCloud),
Nov. 2016, pp. 5–10.

[39] Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe, ‘‘EZTrust:
Network-independent zero-trust perimeterization for microservices,’’ in
Proc. ACM Symp. SDN Res. New York, NY, USA: Association for Com-
puting Machinery, Apr. 2019, pp. 49–61.

[40] G. Palmer, ‘‘De-perimeterisation: Benefits and limitations,’’ Inf. Secur.
Tech. Rep., vol. 10, no. 4, pp. 189–203, Jan. 2005.

[41] C. K. Rudrabhatla, ‘‘Comparison of event choreography and orchestration
techniques in microservice architecture,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 9, no. 8, p. 18, 2018.

[42] A. Scoppetta, ‘‘Zero-trust architectures,’’ M.S. thesis, Politecnico di
Torino, Turin, Italy, Oct. 2022.

[43] S. Rodigari, D. O’Shea, P. McCarthy, M. McCarry, and S. McSweeney,
‘‘Performance analysis of zero-trust multi-cloud,’’ in Proc. IEEE 14th Int.
Conf. Cloud Comput. (CLOUD), Sep. 2021, pp. 730–732.

[44] Y. He, D. Huang, L. Chen, Y. Ni, and X. Ma, ‘‘A survey on zero trust
architecture: Challenges and future trends,’’ Wireless Commun. Mobile
Comput., vol. 2022, Jun. 2022, Art. no. e6476274.

[45] Z. Hosseinifard, L. Shao, and S. Talluri, ‘‘Service-level agreement with
dynamic inventory policy: The effect of the performance review period and
the incentive structure,’’Decis. Sci., vol. 53, no. 5, pp. 802–826, Oct. 2022.

[46] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, and X. Liu,
‘‘SmartVM: A SLA-aware microservice deployment framework,’’ World
Wide Web, vol. 22, pp. 275–293, Jan. 2019.

[47] S.-Y. Lin, L. Zhang, J. Li, L.-L. Ji, and Y. Sun, ‘‘A survey of application
research based on blockchain smart contract,’’ Wireless Netw., vol. 28,
no. 2, pp. 635–690, Feb. 2022.

[48] P. Kochovski, S. Gec, V. Stankovski,M. Bajec, and P. D. Drobintsev, ‘‘Trust
management in a blockchain based fog computing platform with trust-
less smart oracles,’’ Future Gener. Comput. Syst., vol. 101, pp. 747–759,
Dec. 2019.

[49] L. Ruan, S. Guo, X. Qiu, L.Meng, S.Wu, and R. Buyya, ‘‘Edge in-network
computing meets blockchain: A multi-domain heterogeneous resource
trust management architecture,’’ IEEE Netw., vol. 35, no. 5, pp. 50–57,
Sep./Oct. 2021.

[50] S. Galizia, A. Gugliotta, and J. Domingue, ‘‘A trust based methodology
for web service selection,’’ in Proc. Int. Conf. Semantic Comput. (ICSC),
Sep. 2007, pp. 193–200.

[51] S.-G. Deng, L.-T. Huang, J. Wu, and Z.-H. Wu, ‘‘Trust-based personalized
service recommendation: A network perspective,’’ J. Comput. Sci. Tech-
nol., vol. 29, no. 1, pp. 69–80, Jan. 2014.

[52] K. Papadakis-Vlachopapadopoulos, R. S. González, I. Dimolitsas,
D. Dechouniotis, A. J. Ferrer, and S. Papavassiliou, ‘‘Collaborative SLA
and reputation-based trust management in cloud federations,’’ Future
Gener. Comput. Syst., vol. 100, pp. 498–512, Nov. 2019.

[53] F. Liu, L. Wang, L. Gao, H. Li, H. Zhao, and S. K. Men, ‘‘A web service
trust evaluation model based on small-world networks,’’ Knowl.-Based
Syst., vol. 57, pp. 161–167, Feb. 2014.

[54] M. Azarmi, B. Bhargava, P. Angin, R. Ranchal, N. Ahmed, A. Sinclair,
M. Linderman, and L. B. Othmane, ‘‘An end-to-end security auditing
approach for service oriented architectures,’’ in Proc. IEEE 31st Symp.
Reliable Distrib. Syst., Oct. 2012, pp. 279–284.

28854 VOLUME 11, 2023



Z. Lu et al.: Survey on Microservices Trust Models for Open Systems

[55] K. Kravari and N. Bassiliades, ‘‘StoRM: A social agent-based trust model
for the Internet of Things adopting microservice architecture,’’ Simul.
Model. Pract. Theory, vol. 94, pp. 286–302, Jul. 2019.

[56] A. Caballero, J. A. Botia, and A. F. Gomez-Skarmeta, ‘‘A new model for
trust and reputation management with an ontology based approach for
similarity between tasks,’’ inMultiagent System Technologies, K. Fischer,
I. J. Timm, E. André, and N. Zhong, Eds. Berlin, Germany: 2006,
pp. 172–183.

[57] J. Sabater and C. Sierra, ‘‘REGRET: Reputation in gregarious societies,’’
in Proc. 5th Int. Conf. Auto. Agents. Montreal, QC, Canada: ACM Press,
May 2001, pp. 194–195.

[58] H. T. Nguyen, W. Zhao, and J. Yang, ‘‘A trust and reputation model based
on Bayesian network for web services,’’ in Proc. IEEE Int. Conf. Web
Services (ICWS), Jul. 2010, pp. 251–258.

[59] M. Mehdi, N. Bouguila, and J. Bentahar, ‘‘Trust and reputation of web
services through QoS correlation lens,’’ IEEE Trans. Serv. Comput., vol. 9,
no. 6, pp. 968–981, Nov. 2016.

[60] Z. M. Aljazzaf, M. A. M. Capretz, and M. Perry, ‘‘Trust-based service-
oriented architecture,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 28, no. 4,
pp. 470–480, Oct. 2016.

[61] L. Lu and Y. Yuan, ‘‘A novel TOPSIS evaluation scheme for cloud ser-
vice trustworthiness combining objective and subjective aspects,’’ J. Syst.
Softw., vol. 143, pp. 71–86, Sep. 2018.

[62] Z.Malik andA. Bouguettaya, ‘‘RATEWeb: Reputation assessment for trust
establishment among web services,’’ VLDB J., vol. 18, no. 4, pp. 885–911,
Aug. 2009.

[63] M. Tang, X. Dai, J. Liu, and J. Chen, ‘‘Towards a trust evaluation middle-
ware for cloud service selection,’’ Future Gener. Comput. Syst., vol. 74,
pp. 302–312, Sep. 2017.

[64] A. A. Adewuyi, H. Cheng, Q. Shi, J. Cao, X. Wang, and B. Zhou, ‘‘SC-
TRUST: A dynamic model for trustworthy service composition in the
Internet of Things,’’ IEEE Internet Things J., vol. 9, no. 5, pp. 3298–3312,
Mar. 2022.

[65] M. Azarmi, ‘‘End-to-end security in service-oriented architecture,’’
Ph.D. thesis, Graduate School, Purdue Univ., West Lafayette, IN, USA,
2016.

[66] L. Huang, S. Deng, Y. Li, J. Wu, J. Yin, and G. Li, ‘‘A trust evaluation
mechanism for collaboration of data-intensive services in cloud,’’ Appl.
Math. Inf. Sci., vol. 7, no. 1L, pp. 121–129, Feb. 2013.

[67] C. Pasomsup and Y. Limpiyakorn, ‘‘HT-RBAC: A design of role-based
access control model for microservice security manager,’’ in Proc. Int.
Conf. Big Data Eng. Educ. (BDEE), Aug. 2021, pp. 177–181.

[68] Y. Liu and X. Tang, ‘‘A trusted model for service selection in trustworthy
service composition,’’ in Proc. Int. Conf. Comput. Sci. Netw. Technol.,
Dec. 2011, pp. 927–930.

[69] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park, ‘‘QoS for web
services: Requirements and possible approaches,’’W3CWork. Group Note,
vol. 25, no. 3, p. 119, 2003.

[70] Y.Wang and J. Vassileva, ‘‘A review on trust and reputation for web service
selection,’’ in Proc. 27th Int. Conf. Distrib. Comput. Syst. Workshops
(ICDCSW), Jun. 2007, p. 25.

[71] World Wide Web Consortium (W3C). Quality of Service. Accessed:
Nov. 3, 2022. [Online]. Available: https://www.w3.org/Architecture/
qos.html

[72] A. Huff, M. Hiltunen, and E. P. Duarte, ‘‘RFT: Scalable and fault-tolerant
microservices for the O-RAN control plane,’’ in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM), May 2021, pp. 402–409.

ZHONGYI LU received the B.Sc. degree in soft-
ware engineering from the Beijing University
of Technology and the B.Sc. degree in soft-
ware engineering from University College Dublin
(UCD), where she is currently pursuing the Ph.D.
degree with the School of Computer Science.
Her research interests include microservices, trust
management, service-oriented architectures, and
microservices trust models.

DECLAN T. DELANEY received the Ph.D. degree
in network analysis and design for IoT from
the School of Computer Science, University Col-
lege Dublin (UCD), Dublin, Ireland, in 2015.
He worked with LMI Ericsson, Dublin, and
has collaborated with SMEs on Horizon Europe
funding proposals. He is currently an Assis-
tant Professor with the School of Electrical and
Electronic Engineering, UCD. He is an SFI
Funded Investigator of the Project CONSUS

(https://www.ucd.ie/consus), an SFI industry-funded collaboration focused
on precision agriculture, a Principal Investigator of the EPA-funded Smart-
BOG Project (https://www.smartbog.com), and a Principal Investigator of
the CAMEO Project (https://www.cameoplatform.ie). His research interests
include network data analytics for adaptable programmable networks and
infrastructure and data assurance for the IoT and sensor systems.

DAVID LILLIS (Senior Member, IEEE) received
the Ph.D. degree in computer science from Uni-
versity College Dublin (UCD), Ireland, in 2012,
and the degree in law and accounting from the
University of Limerick. As a Fulbright Scholar,
he was hosted by the University of New Haven
Cyber Forensics Research and Education Group
(UNHcFREG). He is currently an Assistant Pro-
fessor at the School of Computer Science, UCD.
He is a Guest Professor with the Data Mining

and Security Laboratory, Beijing University of Technology (BJUT). He is
a Principal Investigator of the TRANSPIRE Project (a RegTech-focused
industry collaboration with Corlytics and Version 1 funded through the Irish
Government’s Disruptive Technologies Innovation Fund) and the CeADAR
Centre for Applied AI (https://ceadar.ie) and an SFI Funded Investigator of
the CONSUS Project (https://ucd.ie/consus). He has published more than
60 peer-reviewed research articles in a variety of subject areas related to com-
puter science, including agent-oriented software engineering, component-
based systems, natural language processing, information retrieval, wireless
sensor networks, and digital forensics.

VOLUME 11, 2023 28855


