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ABSTRACT
Microservices constitute the state of the art for implementing dis-
tributed systems and have been seen as a potential solution towards
open systems. The characteristics of open systems require struc-
tured microservice management, including grouping microservices
that are functionally similar. Microservices use RESTful APIs, often
documented via OpenAPI specifications, to demonstrate their func-
tionalities. Existing similarity metrics for microservice APIs have
primarily focused on individual RESTful endpoints. However, un-
derstanding the full functionality of a microservice within an open
system requires that the entirety of its OpenAPI documentation be
considered. Thus, an approach that can compute a measure of simi-
larity between entire microservice definitions in open environments
is needed. In this paper, we propose an approach that can extract
key information from the OpenAPI descriptions of microservices
using Natural Language Processing (NLP) techniques, vectorise the
extracted information using GLoVe embeddings, and cluster similar
microservices using embedded API file vectors. Evaluations were
conducted on real-world OpenAPI documents to demonstrate the
effectiveness of the proposed approach.
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• Software and its engineering → Software architectures; •
Information systems→ Similarity measures.
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1 INTRODUCTION
The Microservices Architecture (MSA) is a distributed architectural
style that divides monolithic applications into smaller, fine-grained
service instances that act as single-responsibility units. It is ex-
tended from Service Oriented Architecture (SOA) [21]. Microser-
vice instances communicate with lightweight mechanisms, often
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making use of open HTTP resource API descriptions [30]. Some
researchers have thus focused on the use of MSAs to build open
systems [7, 25]. Open systems do not focus on specific tasks and can
react to environments that are changing constantly, unlimitedly,
and unanticipatedly [3]. Singh and Huhns outline key characteris-
tics of open environments, namely: i) system components should
be autonomous; ii) system components can be heterogeneous; and
iii) the environment can be dynamic [24, pp. 7–10].

Based on the definitions above, we define openmicroservices sys-
tems as systems where heterogeneous and autonomous microser-
vice instances may join or leave the system casually without re-
striction as to ownership or origin.

The characteristics of open microservices systems require sys-
tems to have methods to effectively manage and discover microser-
vices [14]. For example, when managing Web services (another
form of SOA), a very efficient approach is to cluster services that
are functionally similar to one another [13]. This logic can also
be applied to the microservices domain. However, this type of ap-
proach has typically been applied within closed systems, in which
the labels of the clusters are predefined. In open systems, however,
clusters cannot be predefined and boundaries for microservices
cannot be set. The similarity between microservices in this context
can only be learned after they join the system. The functionali-
ties and communication mechanisms of microservices are typically
described in API files [10], and so a method that can compute a
meaningful metric of similarity between API files is desirable.

For this research, we focus on files that are modelled with Ope-
nAPI, which is a de facto standard for RESTful API documenta-
tion [6, 27]. Previous research, discussed in Section 2.2, has intro-
duced techniques to compute similarities between RESTful opera-
tions within a single OpenAPI document. In contrast, we use the
entirety of the OpenAPI file for each microservice. Comparing sim-
ilarities between RESTful operations and entire OpenAPI files is
different because: i) the latter contains all endpoints and other meta-
data relating to microservice responsibilities, whereas the former
only contains details relating to a single endpoint; ii) the writing
styles of the descriptive components can vary as different files can
be written by different developers, whereas one OpenAPI file is
typically written by one person or a group of people conforming
to an agreed writing style; iii) the description of one endpoint only
gives the information of one HTTP operation, it cannot provide
the context of the responsibility of the microservice, which is of-
ten provided elsewhere in the API file; and iv) some microservices
need multiple endpoints to implement a single responsibility, which
means API endpoints cannot be treated in isolation. Thus, existing
techniques are not suitable for computing a similarity between
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complete OpenAPI files. This motivates the creation of a novel ap-
proach to computing the similarity between entire OpenAPI-based
microservice descriptions.

This paper introduces our approach to computing similarity
between microservices based on their OpenAPI documentation.
We use Natural Language Processing (NLP) techniques to extract
useful information from OpenAPI files, vectorise the OpenAPI doc-
umentation with pre-trained word embeddings, and cluster similar
microservices using their respective file vectors. Evaluation was
conducted using a dataset that was collected from real-world Ope-
nAPI documentation. The results show that the proposed approach
has the ability to cluster similar microservices effectively.

Section 2 introduces the background of the research. Section 3
explains the proposed approach to embedding microservice defini-
tions into a vector representation to compute similarity. Evaluation
is described in Section 4. Finally, Section 5 concludes the work.

2 RELATEDWORK
This section outlines the concept of OpenAPI and discusses previous
work on computing similarity between API elements.

2.1 OpenAPI
The OpenAPI Specification (OAS) [17], formerly known as the
Swagger Specification, defines a standard, language-independent
interface to HTTP APIs that allows both humans and machines to
understand the functionalities of microservices [16]. OAS has be-
come the market leader and is supported by many leading industry
vendors such as Google, Microsoft, AWS, etc [12, 27].

2.2 API Similarity
Previous research has introduced different measures to compute
the functional similarity between API endpoints of software appli-
cations and Web services using semantics.

One common approach is to utilise word embeddings, where the
semantic meanings of words are represented in vector form. Sev-
eral options are available with varying characteristics [28]. Word
embeddings can be used to convert API endpoints into vectors, so
that the similarity between the vectors can be used to represent the
similarity between API endpoints. Xu et al. [29] trained their own
embeddings with word2vec, a continuous vector representation of
words. Jiang et al. [11] introduced a method to compute the similar-
ity between API files using a pairwise semantic comparison of their
properties, which is also computed using word2vec embeddings.
Gao et al. [9] convert the introduction section of the API file to a
word vector in which words are embedded into the feature vector.

Some methods firstly filter unimportant information that does
not represent API endpoints before computing the semantic simi-
larity between the filtered information. The semantic similarity is
representative of the functional similarity. Al-Debagy et al. [1] ex-
tracted the name and parameters of each operation. The operation
names and parameters were converted into word representations
using fastText: a library for text representation and classification.
Semantically similar operations were clustered together by apply-
ing the Affinity Propagation algorithm to the word representations.
In the aforementioned works, semantic similarity between API files

is typically calculated as the cosine similarity between the relevant
embeddings.

Instead of using word vectors as the basis of clustering API end-
points, some methods use semantic similarity itself as the basis of
clustering similar microservices. Sun et al. [26] introduced a method
to find endpoints within an API file that are similar to a particular
target endpoint. The method first computes the semantic similarity
between the words extracted from all URI endpoints and responses
and the words extracted from the target endpoint. It then builds an
API similarity graph where APIs are the vertices, and the weighted
edges between adjacent nodes represent the overall similarities.
The edges with low weights will be removed, which decomposes a
graph into several sub-graphs, whereby each sub-graph is a cluster.
Baresi et al. [4] proposed an automated process to cluster similar
HTTP operations by analysing the input specification with regard
to a reference vocabulary. The system uses OpenAPI specifications
as input, and extracts the operation names as the basis to compute
the similarity between operations. Then, they used DISCO (DIStri-
butionally related words using CO-occurrences), a pre-computed
database of collocations and distributionally similar words, to find
the most matching schema on Schema.org. API endpoints with
similar schemas are included in the same cluster.

3 CLUSTERING OF OPENAPI MICROSERVICES
We propose an method to cluster similar microservices using their
OpenAPI documentation, as illustrated in Figure 1. The approach
comprises three major steps: preprocessing, vectorisation, and clus-
tering. Each block illustrates one step, which is described in the
sections that follow. The approach uses the OpenAPI descriptions
of microservices as input. Each file is processed and vectorised.
The vectors are then clustered to reflect the similarity between
microservices.

3.1 Preprocessing
The first major step of the proposed approach is preprocessing.
The goal of this step is to extract keywords and phrases from the
OpenAPI file of each microservice in the system, which can then
be used to embed the API file in the next step.

For this research, we focus on documents that conform to OAS
version 3.0 and higher1. Figure 2 shows the example structure of an
OpenAPI 3.0 document. According to OAS 3.0, the openapi, info,
and paths fields are required2, which means that all OpenAPI doc-
uments must contain these fields. The openapi field only contains
the OAS version that the file conforms to. Therefore, the functional
information is extracted from two fields: info and paths.

The info field consists of one Info Object3, which contains seven
fixed fields: title, summary, description, termsOfService, contact, li-
cense, and version. Among these fields, title, the title of the API,
is required. The summary field contains a short summary of the
API, with a more detailed description contained in the description

1OpenAPI Specification 3.0 was released in 2017 [18], and 3.1 was released in 2021 [17]
2The paths field is no longer required as at v3.1.0, but it is very often present in
practice.
3Examples of the OpenAPI objects discussed in this paper can be found in the respective
specifications.
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Figure 1: The proposed approach.

Figure 2: Structure of an OpenAPI document [27].

field. Although summary and description are optional, they are com-
monly used, and are helpful in understanding the functionality of
microservices. Thus, we also extract these from the API document.

The paths field contains one Paths Object that includes a set of
Paths Item objects, each of which describes the operations available
on a an endpoint. A Paths Item object contains thirteen fields. We
use the URL of the endpoint, summary, description, and HTTP
request methods to learn about its functionality.

There are eight HTTP request methods in total. However, in
this approach, we only select four methods: POST, GET, PUT, and
DELETE, as they map to the basic REST design principles of Creat-
ing, Reading, Updating, and Deleting (CRUD) operations, respec-
tively. OpenAPI uses Operation Objects to define HTTP operations.
We use summary, description, and operationId to learn about each
operation.

We use the Swagger Parser4 to parse API files and extract the
required information.

The next stage is to extract words that are used in the file. Af-
ter extracting the relevant information from the aforementioned

4https://github.com/swagger-api/swagger-parser

fields, we remove non-descriptive contents such as URLs, mark-
down labels, symbols, etc. We also split camel case, snake case, and
pascal case into individual words. After this step, we check all the
words and see if they are included in the GloVe embeddings. For
the words that are not included (including compound words that
are written all in lowercase, which is a common feature of path
names and is more challenging to split), we use the OpenAI API to
give prompts to GPT-3.55. The language model returns predicted
completions in an attempt to split these lowercase compound words
into individual words. In this paper, the language model that we
use is “text-davinci-003”, which can understand and generate
natural language. After the words are split, we check whether the
suggested words are in the GloVe embeddings. If a word cannot be
split or cannot be found in the GloVe embeddings after being split,
it is skipped.

We then identify a subset of all the words that were extracted
from each file that can be used as keywords to describe the se-
mantics of the functions of the microservice. In this approach, we
use Sentence-BERT (SBERT) [22], a modification of the BERT net-
work [5]. SBERT can handle tasks like large-scale semantic similar-
ity comparison, clustering, etc., whichmakes it suitable for keyword
extraction.

The extraction consists of three steps: finding candidate key-
word phrases, using SBERT to get the embeddings of the candidate
phrases and the collection of all the words extracted from the Ope-
nAPI file, and finally, finding the 𝑁 most similar candidate phrases
using cosine similarity. Figure 3 illustrates the process.

CountVectorizer from the scikit-learn library [19], which can
convert a collection of texts to a matrix of token counts, is used
to find candidate keyword phrases from the extracted words. All
candidate trigram phrases are obtained after this step. We chose
three as the phrase length, as our findings show that longer phrases
often contain duplicate keywords, which is unnecessary.

After obtaining the candidate phrases, we use the concatena-
tions of each group of candidate phrases and the entirety of all the
extracted words as input to transform them into a single embed-
ding using the SBERT Sentence Transformer6. This is to capture
the semantic meaning of the entire API definition, with a view to

5https://platform.openai.com/docs/models/gpt-3
6https://github.com/UKPLab/sentence-transformers
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later identifying a set of keywords that best capture this mean-
ing. The model we use is ‘distilbert-base-nli-mean-tokens’,
which maps texts to a 768-dimensional dense vector space. This
allows us to embed each candidate phrase and the entirety of the
extracted words. The embeddings can later be used to compute the
similarity between the candidates and the overall extracted words.

Finally, we compute the cosine similarities between the candi-
dates and the single embedding of all extracted words. The candi-
dates with the 𝑁 highest (i.e., 𝑁 = 5) cosine similarity score will
be the keyphrases used to represent the API file. The words in the
keyphrases will become the keywords.

Figure 3: Keywords extraction process.

3.2 File Vectorisation
After obtaining a set of keywords from anOpenAPI file, we vectorise
them so that they can be used to represent the microservice.

Initially, we find the vector of each extracted word using GloVe
embeddings [20]. GloVe provides pre-trained word vectors that
are based on different text corpora. For this research, we use the
Common Crawl word vectors. It contains 840 billion tokens and 2.2
million cased vocabulary. Each word vector has 300 dimensions.

We then compute the embedding of each API file using the word
vectors. The file embedding is calculated using a weighted average.
In this approach, we use smooth inverse frequency (SIF) [2] to
compute the weight of each word embedding. In SIF, the weight of
a word𝑤 is given as 𝑎/(𝑎 + 𝑝 (𝑤)). 𝑎 is a constant (i.e., 0.001) and
𝑝 (𝑤) is the estimated word frequency of word𝑤 . In SIF, 𝑝 (𝑤) can be
estimated from different corpora. The word frequency corpus that
we use is the word frequency list gathered from all the articles in the
Wikipedia Database backup dumps7. It contains more than 2 million
unique English terms. The calculation of an API file vector 𝑉𝑓 𝑖𝑙𝑒 is
given in Equation 1, where 𝑁 represents the number of keywords,
𝑉𝑤𝑜𝑟𝑑𝑖 represents the GloVe embedding of the 𝑖-th keyword, and
𝑤𝑤𝑜𝑟𝑑𝑖 represents the weight of the 𝑖-th keyword.

𝑉𝑓 𝑖𝑙𝑒 =

∑𝑁
𝑖=0𝑉𝑤𝑜𝑟𝑑𝑖 ×𝑤𝑤𝑜𝑟𝑑𝑖

𝑁
(1)

3.3 Clustering
After obtaining vectors of all the OpenAPI files, we cluster microser-
vices that are functionally similar.
7https://dumps.wikimedia.org/backup-index.html

Density-based algorithms are one of the most common tech-
niques for clustering documents [15]. In our approach, we use the
Mean Shift algorithm [8]. Unlike alternatives such as 𝑘-means, it
does not require a specific number of clusters to be specified be-
fore clustering. Another reason to choose Mean Shift is that it will
not consider any nodes to be noise, which is important for this
approach as it is essential that all microservices be included. This
finds neighbourhoods based on density functions, whereby the av-
erage data point is the centre of the cluster. We use the MeanShift
implementation from the sklearn.cluster package [19] to realise
clustering.

4 EVALUATION
To evaluate the approach, we use a real-world OpenAPI dataset8that
we have collected from APIs.guru9, GitHub10, and SwaggerHub11.
As the proposed approach targets OpenAPI files relating specifically
to microservices, and the definition of microservices suggests that
each of them should only hold one responsibility, we filtered out
OpenAPI files that relate to more than one responsibility: usually
those that are working on more than one entity. This process was
conducted manually, as automated identification of microservice
definitions holding multiple responsibilities is outside the scope of
the present work. This includes OpenAPI files that describe entire
products (e.g., Google Maps, Microsoft Azure, Gmail, etc.) and Ope-
nAPI files that describe services with more than one functionality
(e.g., a service that maintains both a client list and a provider list).
The dataset contains 428 OpenAPI files that follow OAS v3.0 or
later.

To facilitate the evaluation, we label each file with three cate-
gories of labels: the “action” label, the “entity” labels, and the “area”
label, described as follows:

• The action label is a verb chosen by the assessor to describe
the functionality. This is based on the descriptive information
and the HTTP endpoints within the file, which means that
it is not necessarily the HTTP request method. Each API file
is assigned an action label. Examples of action labels in the
dataset include “get” (to get information about an entity),
“subscribe” (e.g. to an email newsletter) and “manage” (e.g.
create/edit/delete/get contacts in an address book).

• The entity labels are the entities that the action operates
upon. Each API file may be assigned multiple entity labels.

• The area label is the industrial area that the microservice is
related to. Each API file is assigned an area label.

As an example, consider an OpenAPI file that describes a microser-
vice that gets the bus schedule. Its action label would be “get”, its
entity labels would be “bus” and “schedule”, and its area label would
be “transport”. Table 1 illustrates how some of the OpenAPI files of
microservices are labelled.

In total, the dataset contains 50 area labels. Table 2 lists the
distribution of the area labels of all the files in the dataset.

Two evaluations were conducted: a single-area cluster evalua-
tion and a cross-area cluster evaluation. The single-area cluster

8Available at https://github.com/zhongyilucy/OpenAPIMicroserviceFiles.git
9https://apis.guru/
10https://github.com
11https://swagger.io/tools/swaggerhub/
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File Action Entity Area
Train Station ar-
rival.json

Get Train, Arrival Transport

Flight Offers
Price.json

Get Flight, Offer Transport

Email Subscrip-
tion API.json

Subscribe Letter Marketing

Authentiq
API.json

Authenticate Account Security

ContactApp.json Manage Contact Contact
Table 1: The labels of some OpenAPI files.

Area Count
Account 5
Address 2
Alert 4
API 3
Application 2
Article 6
Audio 2
Banking 24
Blog 3
Book 11
Business 58
Claims 2
Code 2
Communication 9
Contact 4
Data 7
Document 6
Facility 4
Finance 8
Hotel 11
HR 17
Image 9
Language 9
Local Info 10
Logistics 2

Area Count
Marketing 4
Membership 3
Movie 6
Music 10
Name 3
News 4
Notification 9
Payment 11
PDF 13
Phone number 8
Postcode 2
Recipe 3
Referral 3
School 2
Science 2
Search 4
Security 21
System 10
Time 3
Transport 42
Travel 5
User 28
Vehicle 4
Weather 5
Web 2

Table 2: Ground truth labels in the dataset.

evaluation aims to evaluate the suitability of our approach in sys-
tems that only focus on one specific industrial area. Each test is
conducted on API files that have the same area label. The evaluation
is to examine the extent to which our approach can successfully
cluster microservices that relate to similar entities. Since each API
file can have more than one entity label, this evaluation is akin to
multi-label classification.

The cross-area cluster evaluation evaluates the approach in var-
ious scenarios where systems focus on more than one area that
are not necessarily related to one another. The intention of this
evaluation is to simulate the characteristics of an open environ-
ment. Each test is conducted on API files with different area labels.
The evaluation is to examine the extent to which our approach can
successfully cluster microservices according to their industry area.
Since each API file can only have one area label, this evaluation
is akin to a single-label classification. These two evaluations can

not only evaluate the proposed approach in the context of open
environments, but also in systems that are more domain-specific,
which is common in practice.

4.1 Single-Area Cluster Evaluation
The single-area cluster evaluation was conducted within individual
areas to simulate the scenario where a system only focuses on one
kind of industrial area. The API files in the corpus are initially
divided according to their area labels. API files with similar area
labels will be considered to belong to the same area. Then, clustering
is applied within each area, with the aim that microservices that
operate on similar entities will be clustered together, and those
operating on dissimilar entities will be in different clusters. The
entity labels of each API file are used to represent the entities
operated upon by each microservice.

The entity labels of API files within individual areas are the basis
for the evaluation. We use a value between 0 and 1 (i.e., an accuracy
score) to show howwell the proposed approach can ensure API files
inside the same cluster have the same entity labels, while ensuring
API files with dissimilar entity labels are stored in different clusters.
The calculation of the accuracy score is given by Equation 2. The
accuracy score of an area 𝐴 is the arithmetic mean of two other
scores: the macro F1 score𝑀𝐹1𝐴 and the duplication score 𝑑𝑢𝑝𝐴 .

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐴 =
𝑀𝐹1𝐴 + 𝑑𝑢𝑝𝐴

2
(2)

The macro F1 score of each area is the arithmetic mean of the F1
score of each cluster. Equation 3 explains how the macro F1 score of
an area 𝐴,𝑀𝐹1𝐴 , is calculated. 𝐴 is clustered into 𝑁 clusters using
the Mean Shift algorithm. The F1 score of a cluster 𝑖 is 𝐹1𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 .
The macro F1 score reflects the ability of the proposed approach to
cluster OpenAPI files with the same entity labels together.

𝑀𝐹1𝐴 =

𝑁∑︁
𝑖=0

𝐹1𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖
𝑁

(3)

To calculate an F1 score for an individual cluster, it is necessary
to associate at least one label with each cluster, based on the mi-
croservices contained therein. The set of cluster label(s) associated
with area 𝐴, denoted as 𝐿𝑎𝑏𝑒𝑙𝑠𝐴 , is given by Equation 4. Any label
that is assigned to no fewer than half of the API file instances will
be a cluster label. If no such label exists, the most common entity
labels will be the cluster labels. A cluster may have more than one
label when more than one entity label is assigned to ≥ 50% of la-
bels, or there are multiple most common entity labels with equal
frequency.

𝐿𝑎𝑏𝑒𝑙𝑠𝐴 = {𝑙𝑎𝑏𝑒𝑙𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ ≥ 50% 𝑜 𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠}
∪ {𝑙𝑎𝑏𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑙𝑎𝑏𝑒𝑙 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦} (4)

For evaluation purposes, the entity label(s) of each API file in
a cluster are compared with the cluster label(s). The F1 score of
each cluster within an area can then be calculated according to
its standard machine learning formula, which is used to calculate
the macro F1 score of the area. The calculation is based on the
definitions of True Positives, False Positives, and False Negatives
given in Table 3.
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True Positive An entity label of the API file instance that is contained within the cluster label(s).
False Positive An entity label of the API file instance that is not contained within the cluster label(s.)
False Negative A cluster label that is not contained within the entity labels of the API file instance.

Table 3: Definitions of True Positives, False Positives, and False Negatives.

Given the example in Table 2, if all seven API files listed in the
table are put into one cluster, there is no label that is associated with
more than half of the API file instances. Therefore, the cluster labels
are “Flight” and “Offer” as they are the entity labels with the equal
highest label frequency. The count of True Positives, False Positives,
and False Negatives for each API file is listed in Table 4. The F1
score of this cluster can then be calculated, which contributes to
the calculation of the macro F1 score of area “Transport”.

File TF FP FN
Train Station arrival.json 0 2 2
Flight Offers Price.jso 2 0 0

Branded Fares Upsell.json 2 0 0
API Documentation for Train Schedule.json 0 2 2

Airports API v2.json 0 1 2
Airport & City Search.json 0 1 2
Flight Offers Search.json 2 0 0

Table 4: True Positives, False Positives, and False Negatives of
exampled API files

After obtaining the macro F1 score of the area, we then calculate
its duplication score. The duplication score is also a value between
0 and 1, where 0 means the cluster labels of all the clusters within
the area are the same and 1 means the cluster labels of all the
clusters inside the area are entirely distinct. Equation 5 explains
how the duplication score of an area 𝐴 is calculated, denoted as
𝑑𝑢𝑝𝐴 . Assume 𝐴 contains 𝑀 API files, which are distributed into
𝑁 clusters. For each cluster 𝑖 , there is a 𝐿𝑎𝑏𝑒𝑙𝑡𝑜𝑡𝑎𝑙 , which is the set
of all labels for this cluster, and a 𝐿𝑎𝑏𝑒𝑙𝑢𝑛𝑖𝑞𝑢𝑒 , which contains the
labels that are unique to this cluster (i.e., those that have not been
assigned to any other clusters in the area). The duplication score of
𝐴 is the weighted average of the size of 𝐿𝑎𝑏𝑒𝑙𝑢𝑛𝑖𝑞𝑢𝑒 divided by the
size of 𝐿𝑎𝑏𝑒𝑙𝑡𝑜𝑡𝑎𝑙 of each cluster. The weight of each cluster is its
size divided by𝑀 .

𝑑𝑢𝑝𝐴 =

𝑁∑︁
𝑖=0

|𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 |
𝑀

×
|𝐿𝑎𝑏𝑒𝑙𝑢𝑛𝑖𝑞𝑢𝑒𝑖 |
|𝐿𝑎𝑏𝑒𝑙𝑡𝑜𝑡𝑎𝑙𝑖 |

(5)

To ensure that the areas being tested have enough API files for
the clustering algorithm to learn, we only conduct single-area eval-
uations on areas that contain more than 8 API files (the average size
of the areas). Table 5 lists the macro F1, duplication, and accuracy
scores of the tested areas. It is worth noting that in practice, it
may be impossible to achieve a 1.0 score for either macro F1 or
duplication score due to the mixing of labels.

The macro F1 score indicates that the approach can make sure
that the majority of the API files within one cluster have the same
entity labels. Only three areas achieve a macro-F1 below 0.8. The
results in terms of duplication are somewhat less consistent. Ap-
proximately one third of areas show considerable overlap between

Area Macro F1 Duplication Accuracy
Banking 0.899 0.750 0.825
Book 0.823 0.136 0.480

Business 0.911 0.662 0.786
Communication 0.875 1.000 0.938

Hotel 0.960 0.273 0.616
HR 0.778 0.733 0.756

Image 0.971 0.000 0.485
Language 0.635 0.556 0.595
Local info 0.844 0.550 0.697
Music 0.944 0.636 0.790

Notification 1.000 0.111 0.556
Payment 0.887 0.455 0.671
PDF 0.912 0.038 0.475

Security 0.885 0.111 0.498
System 0.833 0.675 0.754

Transport 0.624 0.452 0.538
User 0.993 0.000 0.497

Table 5: Precision, Recall, and F1-Scores within single areas.

cluster labels, with a duplication score below 0.2. This illustrates
the difficulty in putting all the API files with the same entity labels
into the same cluster and keeping cluster labels unique. This kind of
problem is especially prominent when most of the API files within
one area have the same entity label (e.g., the User area, the Image
area, the Hotel area, and the PDF area), or only very few API files
do not contain the same entity labels that the rest of the API files
have (i.e., the Notification area, the Book area).

Taking the User area as an example, all the microservices in
that area operate on a “user” entity. Therefore, even though a large
majority of instances with that entity label are clustered into a large
cluster, all other clusters that are created also have “user” as an
entity label and thus the duplication score is 0. This is exacerbated
in this specific instance because there are many other entities in
that area with the potential to result in additional cluster labels.
Areas with a wider variety of entity labels tend to exhibit a higher
duplication score, reflecting a strong ability to successfully cluster
these entities separately. Based on this observation, it is worth
noting that when applied to systems that only focus on one area,
the proposed approach will work best when microservices operate
on different entities within that area.

The single-area cluster evaluation demonstrates that the pro-
posed approach can differentiate API files with different entity
labels in the same area. However, for highly similar microservices,
it sometimes overfits and cannot ensure that all microservices with
the same entity labels can be put into the same cluster.

4.2 Cross-Area Cluster Evaluation
The aim of our approach is to design a similaritymetric for OpenAPI-
based microservices in open environments. However, since it is
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Combination Homogeneity Completeness V-Measure

Not similar

Transport+User+Banking 0.887 0.692 0.778
Blog+Recipe+News+Contact+Science 1.000 0.849 0.918

Code+Communication+Facility 0.643 0.739 0.686
PDF+Phone Number+Weather 1.000 0.888 0.941

Time+Music+Membership+Marketing 0.673 0.804 0.768

Similar

Notification+Alert 0.762 0.341 0.472
Music+Movie 1.000 0.679 0.809

Contact+Communication 0.720 0.407 0.520
PDF+Image 1.000 1.000 1.000
Book+Article 0.768 0.768 0.768

Not overtly similar

Travel+Vehicle+Hotel 1.000 0.889 0.941
Marketing+Contact+Data 0.425 0.514 0.465

Book+Business 0.645 0.754 0.695
Music+Membership+User+Payment 0.816 0.655 0.727

Table 6: The Homogeneity, Completeness, and V-Measure scores of different combinations.

unfeasible to create a fully open environment in practice, we use
API files with different area labels to simulate open environments
where microservices can relate to a variety of industrial areas. The
goal of cross-area cluster evaluation is to test whether the approach
can group API files with the same area label into the same cluster.

We use V-measure [23] to evaluate the clustering result. V-measure
is an external entropy-based cluster evaluation measure. It is the
harmonic mean of the homogeneity and completeness scores. Ho-
mogeneity indicates the extent to which the data points inside one
cluster are from the same class. Completeness indicates the extent
to which the data points from the same class are put into the same
cluster. V-measure is a value between 0 and 1. The higher the value,
the more homogeneous and complete the clustering result is.

To more completely assess the effect of cross-area clustering, we
created three scenarios to simulate three levels of difficulty in terms
of the clustering problem. This level of difficulty is represented by
the degree to which areas share common characteristics (as deter-
mined by human judgement). To facilitate this, we group areas into
three types of combinations: areas that share no similar character-
istics; areas that share similar characteristics; and areas that are not
overtly similar, but can be applied to the same scenario. 5 groups
of areas were selected where none are similar to any others, and
cannot be logically formed into a business logic together. 5 further
groups of areas were selected that are either similar or share the
same characteristics. 4 groups of areas were selected that are not
overtly similar to each other, but that could be combined for the
same use cases in limited circumstances. The selected combinations
are shown in Table 6. To choose some examples from this table:
“Notification” and “Alert” share similar characteristics as they are
used to inform users/services; “Music” and “Movie” share similar
characteristics as they are both for artistic entertainment; “Book”
and “Business” are not overtly similar as they do not share similar
characteristics, but they are somewhat related because they can
be used to build a retail system for book stores; “PDF”, “Phone
Number” and “Weather” are not similar at all, not only because
they do not share similar characteristics, but also because there is
no clear microservice use case whereby these would logically be
combined.

We use the area label of each API file as its class so that we can
conduct the tests. Table 6 shows the homogeneity, completeness,
and V-measure of all the combinations. The average homogene-
ity score is 0.81, which reflects a strong performance in terms of
how well the API files within one cluster have the same area label.
The average completeness score is 0.713, which reflects a similarly
strong performance in terms of how well the approach can include
all API files with the same area label into the same cluster.

For dissimilar areas, with average V-measure scores around 0.8,
the proposed approach showed an ability to separate microservices
from different areas, and put them into matching clusters.

For areas that are similar, the average homogeneity score is sig-
nificantly higher than the average completeness score. This means
that the approach can ensure that the instances inside each cluster
are from the same class. However, in the context of very similar
areas (e.g. “Notification” and “Alert”), the approach is less effective
at ensuring that all of the API files from the same class are put into
the same cluster, which is not a particularly surprising result given
its difficulty. Nevertheless, despite this issue, the overall V-measure
for similar areas remains above 0.71 on average.

For areas that are not overtly similar but can be formed to
support certain use cases, the performance is strongly related to
the areas inside the combination. For combinations whose areas
are very different from any others inside the combination (e.g.,
“Travel+Vehicle+Hotel”, “Music+Membership+User+Payment”), the
approach can differentiate API files and put them into the correct
clusters. However, if the combination is less diverse (e.g., “Mar-
keting” and “Contact” both can have API files that manage email
addresses for different purposes), the approach will be less effective.

The cross-area cluster evaluation demonstrated that the pro-
posed approach can differentiate microservices with different area
labels. However, when it comes to combinations with similar area
labels, the approach will be less accurate, and sometimes it will put
microservices with the same area label into several clusters.

In general, the proposed approach shows the ability to differen-
tiate and cluster similar OpenAPI files correctly. However, highly
similar microservice definitions remain difficult to distinguish in
some instances. The cause of this situation could be: i) the clus-
tering algorithm used in the proposed approach is less efficient in
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multi/single-label classification; ii) the parameters that were passed
to the clustering algorithm (e.g., the bandwidth of the clusters) led
to overfitting; or iii) the API files that are included in the dataset
are rather repetitive and similar, which amplifies this weakness.

5 CONCLUSION AND FUTUREWORK
This paper proposes a similarity metric for OpenAPI-based mi-
croservices that can cluster similar microservices together while
grouping dissimilar microservices separately. The methodology
comprises three steps: preprocessing, file vectorisation, and cluster-
ing. First, we obtain descriptive information fromOpenAPI files and
extract keywords to represent the files. Then, with these keywords,
we use GloVe embeddings and SIF to generate file vectors. Finally,
we use the Mean Shift algorithm to cluster the file vectors.

The proposed approach was evaluated on a real-world OpenAPI
file dataset with more than 400 API files that were collected from
different applications. The tests demonstrated that the proposed
approach has the ability to differentiate and cluster similar OpenAPI
files but occasionally struggles with systems that contain highly
similar or repetitive microservices.

In the future, we will work on improving the performance of the
approach by adjusting the clustering algorithm and expanding the
dataset. We will also examine the application of this approach in
the context of microservices management for open systems.
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