Delivering Multi-Agent MicroServices using
CArtAgO

Eoin O’Neill, David Lillis[0000—-0002-5702-4463] ' Gregory M. P.
O'Harel0000—0002—5124—1686] 5114 Rem W. Collier[0000—0003—0319—0797]

School of Computer Science, University College Dublin, Dublin, Ireland
eoin.o-neill.3Qucdconnect.ie
{david.1lillis,gregory.ohare,rem.collier}@ucd.ie

Abstract. This paper describes an agent programming language agnos-
tic implementation of the Multi-Agent MicroServices (MAMS) model -
an approach to integrating agents within microservices-based architec-
tures. In this model, agents, deployed within microservices, expose as-
pects of their state as virtual resources that are externally accessible
using REpresentational State Transfer (REST). Virtual resources are
implemented as CArtAgO artifacts, exposing their state to the agent
as a set of observable properties. Coupled with a set of artifact opera-
tions, this enables the agent to monitor and manage its own resources. In
the paper, we formally model our approach, defining passive and active
resource management strategies, and illustrate its use within a worked
example.
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1 Introduction

This paper builds on previous work that has introduced the Multi-Agent Mi-
croServices (MAMS) model [24,34]: a model that promotes a view of agents as
hypermedia entities whose body includes a set of virtual resources that can be
interacted with using REpresentational State Transfer (REST) [10] and can be
deployed as microservices. Overall, the work has three main objectives: to facil-
itate the seamless deployment of Multi-Agent Systems (MAS) within microser-
vices ecosystems; to exploit modern industry tools to enhance the deployment of
MAS; and ultimately, to enable the development of an emerging class of systems
known as Hypermedia MAS [4,5].

The specific focus of this paper is to improve on the approach described in [34]
by proposing an agent-programming language independent approach based on
CArtAgO [28] and to introduce support for hypermedia links through the use
the Hypertext Application Language (HAL) [16] as described in [24]. To achieve
this, Section 3 describes the refined MAMS model; Section 4 introduces the suite
of CArtAgO artifacts developed to implement the model; Section 5 describes
the integration with the ASTRA agent programming language; and Section 6
illustrates its use through a worked example. Finally, Sections 7 and 8 present
discussion and concluding remarks.
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2 Related Work

There has been a significant amount of research into the integration of agents
and services. A good historical perspective on this can be found in [5]. An ex-
cellent overview of agent-based service-oriented computing is provided in [12],
with a focus on Web Services technologies. [25] is an excellent recent survey of
agent-based cloud computing applications that is heavily focused on agent-based
service-oriented computing (in the cloud). Much of it tackles the relationship
between agents and services from a more traditional perspective. In this paper,
the objective is to focus more closely on the relationship between agents and
microservices - an architecture style linked to service-oriented computing that
promotes a more decentralised approach to software development.

Microservices are increasingly seen as an important innovator in software
design. They champion the decomposition of monolithic systems into loosely-
coupled networks of services [33] that are necessary to deliver internet-scale ap-
plications [9]. This has the effect of reducing the complexity of many of the com-
ponents, but comes at the cost of increasing the complexity of deployment [32].
However, this challenge has been met through the rise of DevOps [3] and Con-
tinuous Software Engineering methods [23].

The rise of microservices presents an opportunity for Multi-Agent Systems
(MAS) research. As is illustrated in [34], there is a strong affinity between the
principles of microservices and MAS that can be exploited to deliver innovations,
both in terms of the use of MAS technologies with microservices and the use of
microservices technologies with MAS. This affinity is reinforced in [30], which
argues that microservices can be used to facilitate agility of development for
agent-based Internet of Things (IoT) systems. This view is further reinforced
in [18], which argues that microservices-based IoT systems can be modelled as
agents, and in [17], which presents a multi-agent trust model for IoT.

While not directly referencing microservices, [21] argues for a new “Agents as
a Service” paradigm that would enable a new generation of agile services founded
on the MAS models and techniques. Similarly, [34] argued for the emergence of
an “Organisation as a Service” paradigm in which MAS implementations of
organisational models are implemented and deployed as microservices that can
be utilised by other non-agent-based microservices.

Key to realising this vision of agents and microservices is the need for dedi-
cated programming tools and frameworks that help to simplify the development
process. To date, there have been two main attempts to achieve this. Firstly, [35]
introduces CAOPLE: a Caste-centric Agent-Oriented Programming Language
and Environment for programming microservices. Conversely, [34] presents an
extension to ASTRA [6] (a variant of AgentSpeak(L) [26]) that supports the
implementation of microservices.

3 Multi-Agent Micro-Services

The concept of Multi-Agent Micro-Services (MAMS) was originally introduced
in [34]. The paper argues that microservices share many common traits with
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Multi-Agent Systems (MAS), to the extent that both approaches can be broadly
characterised as being concerned with the creation of loosely-coupled distributed
systems comprised of small independent (autonomous) components with internal
state. Of course, there are also many differences between the two approaches,
not least the incorporation of practical reasoning, but this commonality suggests
that we are beginning to see the emergence of approaches within industry that
are, at least, compatible with the MAS perspective.

As mentioned in the introduction, the ultimate goal of MAMS is to allow
agents to be deployed as entities that co-exist with other agents and resources in
a hypermedia space. This space encompass all resources that can be: addressed
using a Uniform Resource Identifier (URI); accessed using the HyperText Trans-
fer Protocol (HTTP); and connected through a network of hyperlinks. Through
these aspects, agents become not only identifiable and discoverable, but also ob-
servable. That is, the body of an agent can be directly observed and interacted
with through the use of appropriate HTTP requests.

This notion of observability can lead to direct benefits in terms of enabling
emergent behaviour. To illustrate this, consider a scenario in which a person
overhears a conversation between other people in a public space. By listening to
the conversation, the person is able to build not only models of the beliefs and
goals of the other people, but also the protocols/rules that underpin the conver-
sation. At some point the person may interject into the conversation simply by
applying the learnt protocols/rules. With MAMS, this type of behaviour could
be replicated by modelling inboxes as virtual resources that return a filtered
view of the agents conversation history upon receipt of a GET request. Perform-
ing the GET request is the agent equivalent of listening in to the conversation
of the other agent. Upon receipt of the conversation history, it could mine the
messages to not only understand: what beliefs the other agent has, what services
it provides, and what protocols it uses for that interaction; but also the URIs of
the other agents that it has interacted with. This approach would also facilitate
integration with a model of agent conversation reasoning (e.g. [1,19]).

3.1 Basic MAMS Model

At its core, MAMS adopts the view of a microservice as a container for one
or more agents. Agents may be internal (private) to the container or external
(public). Public agents are associated with a Uniform Resource Identifier (URI)
based on a combination of the host name and port of the service plus the name of
the agent. They are also associated with a hypermedia body that is constructed
from a set of virtual resources. Private agents have standard string-based identi-
fiers and no hypermedia body. Both types of agent should be implemented using
a common agent programming language or framework. A microservice is not
considered a MAMS service if there are no public agents.

Figure 1 presents a sketch of a standard layered microservices architecture,
access to which is mediated by an API Gateway, a common microservices de-
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Fig. 1. Agent/Service Integration

sign pattern' that employs a front-facing service that acts as a single point of
entry to the layered architecture. In the context of this architecture, one of the
goals of MAMS is to facilitate interaction between agent-based (A) and non
agent-based (S) microservices (i.e. agent-agent, agent-service, service-agent and
service-service). Agent-service interaction is achieved by giving agents the ability
to submit HTTP requests and process HI'TP Responses. Service-agent interac-
tion is achieved by exposing the virtual resources through REST using URIs -
based on the associated agent’s URI - providing a HTTP-based interface that
does not require knowledge of agent concepts.

Agent-agent interaction, using an Agent Communication Language (ACL)
or equivalent, can also be realised through virtual resources. Specifically, each
agent’s inbox can be modelled as a virtual resource. Sending a message to an
agent is reduced to submitting a HTTP POST request to the receiver agent’s
inbox URI, with the content of the request being the message. This approach is
demonstrated later in Section 4.4. It is useful to note that FIPA’s HTTP message
transport service specification [22] works in a similar, if more convoluted, way:
the sender agent passes the message to a message transport service which wraps
the message in an envelope. It then POSTS the wrapped message to an Agent
Communication Channel hosted on the receiver agents platform which unwraps
the message and delivers it to the relevant agent.

Another form of agent-agent communication that is supported by MAMS
is through non-ACL-based virtual resources. Each agent is also able to interact
with other agents using the same model that is used for agent-service interaction.
While this can be used in place of ACL-based interaction, the more interesting
scenario is where the virtual resources represent abstractions of the agent state,
such as public beliefs and goals, lists of acquaintances, or services offered. Such
resources would be publicly accessible and, as such, discoverable by other agents.
This posits a view where agents could directly observe the behaviour of other
agents, explore the acquaintance networks of their own acquaintances, and po-
tentially seek out other agents that provide the services that they need access
to. Hyperlinks are essential to achieving this vision. While hyperlinks could be

! https://microservices.io/patterns/apigateway.html
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used externally to identify virtual resources, relevant links were not included in
the resource representations returned by HTTP requests. [24] extended the basic
MAMS model to include such hyperlinks based on the Hypertext Application
Language (HAL). This extended model is described briefly in the next section.

3.2 Extending MAMS with HAL

The introduction of a resource representation that includes hyperlinks is a key
step in achieving the vision of agents as hypermedia entities. There are many
potential technologies for use in this area, and [20] presents a good summary
of those in the context of the Web of Things. In [24], we selected Hypertext
Application Language (HAL) [16] for adoption with MAMS. While HAL is not
an IEFT standard, it is one of the simplest linked data models to have been
proposed, it is relatively easy to implement, and it is currently in use in multiple
projects?.

{
"_links": {
"self": { "href": "/api/books/1234" }
}
"id": 1234,
"title": "Hitchhiker's Guide to the Galaxy",
"author": "Adams, Douglas"
}

Fig. 2. Example HAL resource representation (from [11])

HAL augments JSON representations with additional keys prefixed by an
underscore (_). The _1links key is used to define a set of named hypermedia links
relevant to the resource being represented. For example, the JSON in Figure 2
represents a book resource. The self link, is the URI of the representation itself.
Additional links can added that define operations specific to the resource (e.g. a
library system may add a link to the loan resource for that book).

A weakness of HAL is that the semantics associated with the links is appli-
cation dependent. Using HAL requires the definition of what valid links can be
used for each resource. In response to this, best practice for the use of REST
in industry was reviewed. This highlighted that many REST APIs focus on two
styles of resource: individual items and lists of items [29] that were manipulated
through the mapping of HTTP verbs to Create/Read/Update/Delete (CRUD)
operations. Based on this, it was decided that a generalised implementation of
these resource types would be developed based on this best practice.

2 https://github.com/mikekelly /hal_specification /wiki/ APTs
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Resource|URI POST GET PUT/ DELETE
Type PATCH
Item /{id} n/a Get the item|Update the|n/a
item
List /{list_name} Add to the|Get entireln/a n/a
list list of items
ListItem |/{list_name}/{id} |n/a Get the item|Update the|Remove item
item from list

Table 1. Core resource types and key HTTP verb mappings

Table 1 contains a summary of the standard set of HTTP verbs that are
associated with these resource types and their associated behaviours. For exam-
ple, as can be seen in this table, it is increasingly common for individual items
(singleton resources) to support retrieval of their state using a GET request and
a partial/full update using PATCH/PUT. POST operations are typically not
permitted because they are creation-oriented (which does not apply to a single-
ton). Similarly, DELETE operations are typically not supported because there
is no way to recreate the resource once it is deleted.

The choices described above represent just one possible resource implemen-
tation strategy for MAMS. It was made in an effort to facilitate exploration of
the MAMS model. Our long-term goal is to explore the use of JSON-LD [31]
due to its use of the Resource Definition Framework (RDF) as a schema [7].

4 An Artifact-based Framework for building MAMS
agents

To illustrate the MAMS model, a prototype implementation has been devel-
oped. When designing the prototype, two potential approaches were discussed:
creating a bespoke implementation from first principles, or adapting an existing
framework. In this paper, the latter approach was preferred because our goal
is to provide an implementation that is agnostic to agent programming lan-
guage. To this end, the CArtAgO framework [28] was chose because it was felt
that virtual resources can be modelled as artifacts and because CArtAgO is an
established and tested technology that is integrated with multiple established
agent programming languages. This has allowed us to focus on the model rather
than lower-level integration issues.

A key difference between MAMS and the CArtAgO approach is that ar-
tifacts combine observable properties (state) and operations (behaviour) while
virtual resources support only state. In our implementation, the state of a vir-
tual resource is modelled as observable properties. Operations are provided to
enable the agent to manipulate the resource (e.g. updating an observable prop-
erty, linking the artifact, etc.) in a way that is compliant with the MAMS model.
A limitation of using CArtAgO is that virtual resources are private, but arti-
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facts are designed to be shared. This means that it is possible to misuse our
implementation and an agent within the same microservice could gain access to
another agent’s virtual resources. As the aim of this study is to demonstrate a
prototype concept, rather than provide an industry standard deployable system,
we have not attempted to address this issue at this stage.

To implement the MAMS model, a number of artifacts have been developed
that represent key concepts. A high-level view of our approach is illustrated in
Figure 3, where each agent is associated with a hypermedia body, consisting
of a set of CArtAgO artifacts that model the virtual resources of the agent. A
base artifact is provided as a shared base to which each resource artifact is
linked and this in turn is linked to a shared webserver artifact that exposes the
resources over HTTP. The webserver artifact is implemented using Netty: an
asynchronous Java-based event-driven network application framework for high

performance protocol servers?.

Internal communication
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Fig. 3. Modelling a RESTful agent body as artifacts

The base artifact acts as the root of a resource tree that implements our
model of a MAMS agent. To be clear, we are using CArtAgO to implement our
model rather than attempting to extend CArtAgO to support the model. As a
result, we do not make use of underlying concepts such as the CArtAgO agent
body in this work.

Modelling resources explicitly as artifacts allows for clearly-defined semantics
that includes a description of how each HTTP verb will affect the state of the
artifact modelling the associated resource. It also specifies the interface between
the agent and the resource, which is defined in terms of the operation, observable
property, and signal concepts of CArtAgQ. This paper describes two approaches

3 https://netty.io/
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to implementing virtual resources as artifacts: a passive resource management
model (Section 4.2), and an active resource management model (Section 4.3).
However, before discussing these approaches, Section 4.1 describes how artifacts
are used to implement virtual resources.

Two additional artifacts are created when a MAMS microservice is started.
The restclient artifact implements a REST client that can be used to perform
REST API calls. For example, the postRequest operation takes a URI and
string representation of a JSON body as input and generates a response code
and string content. Similar operations exist for GET, PUT and DELETE. The
comms artifact provides support for sending FIPA-ACL style messages to other
MAMS agents. More information on this is provided in Section 4.4.

4.1 Implementing Virtual Resources as Artifacts

Figure 4 illustrates how MAMS exposes artifact-based virtual resources on the
web and the relationship between an agent and the associated set of artifacts
that implement those resources. Each artifact created by the agent is linked to
another artifact, creating a back channel through which incoming HTTP requests
are routed to the relevant artifact. The back channel consists of a set of handlers
that implement the routing behaviour. Collectively, the set of handlers form a
tree structure rooted at the base artifact. Each handler is associated with a
single artifact and each path from the root to a handler represents the URI of a
virtual resource of the agent.

makeArtifact
Agent Layer

eb link link Resource link Sub-
Server Base Artifact Resource
Artifact Artifact
[~ [~ Artifact/Environment Layer
1' 1 Backchannel Layer
| 1
Base
_______M____M
http://host:port /agent-id / res-id / subres-id URL Layer

Fig. 4. Use of CArtAgO artifacts for linking RESTful resources to agents

Listing 1 contains some pseudocode for creating the body of an agent. As
can be seen, the agent starts by retrieving a reference to the webserver artifact.
Once it has this, a base artifact is created. This artifact is given a name of the
form base-<aid> (where “<aid>” is the agent’s unique identifier) and is then
linked to the webserver artifact. The agent focuses on the newly created artifact
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so that it will receive updates on observable properties and signals. Finally, a
createRoute () operation is executed on the newly created base which creates
the associated handler and links it to the webserver artifact’s handler.

Listing 1: Pseudo Code for Creating the body of a MAMS Agent

To support the model described in Table 1, three additional types of artifact
are required: item, list and listitem. However, the exact form that each of
these artifacts takes depends on whether a passive or active management model
is being used.

Section 4 defined the representation of an item resource as the set of observ-
able properties associated with it. Receipt of a request for a representation of
that resource involves transforming the observable properties into that relevant
representation format. For the model described in Section 3.2, we use a Java
object and an intermediary format that is transformed to/from JSON using the
Jackson API*. For GET requests, the _links field is appended to the resulting
JSON object based on the linkages that exist between artifacts (those that are
used to form the backchannel). For POST, PUT and PATCH requests, the JSON
is transformed into a Java object whose fields correspond to the observable prop-
erties of the artifact and whose values are used to update those propertied. To
facilitate this, each item or list artifact is associated (at creation time) with
a Java class that defines what type of object is to be used for the intermedi-
ary format. On creation, either default values are used to initialise observable
properties or an instance of the class is passed to provide the initial values.

4.2 Passive Resource Management

In the passive model, agents are not responsible for enforcing the changes associ-
ated with any HTTP requests received. They simply act in response to resource
changes. How the resource is updated depends on an associated set of semantics
which is loosely described in Table 1.

As the artifact receives each request, depending on the HTTP verb used,
the agent receives a CArtAgO signal indicating the nature of the update that
was applied. This allows the agent to act in response to expected changes in the
resources, but does not affect the speed by which the response is returned to the
system making the request. Additionally, the agent is also able to make changes
to the state of the resources through a suite of internal operations. The passive
model is illustrated in Figure 5.

This idea allows rapid interaction between the resource and the entity making
the request, while maintaining that the agent is still informed about the state
of each resource. A key factor of this method is the fact that although the agent
may have control over the resource, the resource is open to the world as an

* https://github.com/FasterXML /jackson
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Fig. 5. Schematic of a Passively Managed Resource

endpoint. This permits any service (or agent) to make a request and receive a
timely response from this entity, something that may not be possible when the
mentalistic aspect of deliberation that is associated with agents is introduced. In
terms of usage, this type of resource model seems suited either to closed systems
where trust is not an issue and all resource changes follow expected patterns of
behaviour, or to open systems where the manipulation of resources is a desirable
aspect.

4.3 Active Resource Management

For active management, each artifact also has a set of HT'TP verbs that it can
handle based on Table 1. In contrast, however, the agent is now placed in control
of the response given by any artifacts under its stewardship. This is illustrated
in Figure 6.

Once a valid HTTP request is made of an artifact, a CArtAgO signal is
generated based on the type of HT'TP verb passed to the agent. For GET and
DELETE requests, the request body is ignored. Conversely, the body is included
for POST, PUT and PATCH requests. This event is passed to the agent which
then deliberates to decide on the correct response.

If deemed acceptable, the agent executes the “accept” operation on the ar-
tifact. The request is then be removed from the event queue and processed. A
response detailing that the request made was handled correctly would be issued.
In the case where the request was rejected by the agent, the “refuse” operation
would be invoked, issuing a response that the request was denied.
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Fig. 6. Schematic of an Actively Managed Resource

DELETE

With regard to a use case, this scenario can be utilised when dealing with
a resource that is highly constrained and only wants to accept requests of a
given standard/type. This then lends itself to Quality of Service (QoS) based
systems, as it allows the system to guarantee certain criteria with regard to the
manipulation of resources.

4.4 FIPA-ACL Based Interaction

ACL-based communication between MAMS services is supported through the
creation of a custom inbox virtual resource. This resource is somewhat similar
to a standard list resource, with the exception that it only accepts POST
requests. This resource is designed to be used in tandem with the comms artifact,
which includes an operation for sending messages to MAMS agents via a POST
request. The content of the message is submitted in the form of a JSON string.
It is left to the developer to decide how to generate this content.

In its current form, the FIPA Message class that models messages only in-
cludes the: sender, receiver, performative, language and content fields. The con-
tent itself is converted into a JSON string that is transmitted as the body of the
POST. A signal is generated by the inbox resource for each message received.
The content of this signal the performative, the sender URI, and a string rep-
resentation of transmitted content. Again, conversion of this JSON into a more
useful form is left to the developer. The current prototype is currently released
as part of the ASTRA-MAMS integration, which is described in more detail next
in Section 5 and comes with built-in support for converting functional terms into
JSON and vice versa. It should be noted that the artifacts described here do not
map onto the model defined in Section 3.2 but are purpose-built to facilitate
FIPA-based interaction.
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5 Integration with ASTRA

To further explore our MAMS model, we have integrated our CArtAgO based
solution with the ASTRA agent programming language [6,8]. ASTRA is an im-
plementation of AgentSpeak(ER)[27] a recent evolution of AgentSpeaK(L)[26].

All of the source code for MAMS and for the ASTRA integration with MAMS
is open source and available to download from Gitlab ®. This includes:

— mams-cartago-core package: webserver, restclient, and base artifacts;
support for handlers and a basic web server.

— mams-cartago-hal package: implementation of item, list and itemlist
artifacts together with support for Java classes as schema.

— mams-astra-hal package: integration of ASTRA and also the MAMS +HAL
model and the prototype FIPA-ACL based communication model.

— examples: a set of sample programs (implemented as Maven projects).

Listing 2: Part of the mams.MAMSAgent program

The main ASTRA code for creating a MAMS Agent is implemented in the
MAMSAgent class. Partial code for this class is shown in Listing 2. The +!setup ()
rule on lines 2-13 is invoked only once by the first agent to be created. This plan
configures the MAMS service, creating all the default artifacts. In contrast, the
+!init () rule on lines 16-18 are to be used by all other MAMS agents. The
associated goal is used to link the agent to the already created artifacts. Once
the 'init () goal has been achieved, the agent is able to create the base artifact
using the rule on lines 23-31.

Listing 3: FIPA ACL Code from mams.MAMSAgent class

The snippet of code in Listing 3 relates to the support for FIPA ACL based
communication. The module on line 2 includes support for for converting func-
tional term into JSON and vice-versa. The +!transmit() rule on lines 12-17
implement support for sending messages. This is matched by the rule on lines
4-7 which intercepts the raw CArtAgO signal relating to an incoming message.
The rule invokes a chain of subgoals that results in the conversion of the raw con-
tent of the message back into a form that corresponds more closely to a normal
ASTRA message event. The !message(...) goal generated on line 10 should be
could by the implementing agent to handle receipt of specific FIPA messages.

® https://gitlab.com/mams-ucd
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6 Illustration

To demonstrate our approach, a version of the Vickrey Auction example pre-
sented in [34] has been built using the framework described in Section 5. The
resultant code base is quite different because the original approach mixed code
for handling HTTP requests and responses with code for implementing the auc-
tions. In contrast, the code in our approach is more focused on implementing
the auctions.

The implemented system exposes a set of virtual resources that are linked to
specific agents within the implementation. As shown in Figure 7, the Manager
agent is associated with the /clients and the /items resources and the Bidder
agents, which are created by the Manager, are each responsible for their own
/wanted resource.

POST /items . ° POST /clients
{2applest -+ fitems /clients *
- >
e Link to <bidder-name>/wanted
Return
Result 4 Manager
r H
\ ™~ Creates ! POST /wanted
\ \\1 Bidder(s) H {apples / 2 euro each}
Interested) ;
Alerts \
Bidders
Notify v i
Interest Bidder(s) :

L I
— /wanted

Vickrey

: (2 apples)
Auction |

| Auctioneer

MAMS Vickrey Auction Service -~ ’

Fig. 7. Vickrey Auction Implementation (taken from [34])

Listing 4: Part of the mams.PassiveMAMSAgent program

The mams .PassiveMAMSAgent agent program provides plans to support the
creation of passively-managed artifacts. Listing 4 shows a plan that can be used
to create a list resource. Below this, a second piece of code from the Manager
agent program illustrates how to use this to create a list of clients. It also demon-
strates how CArtAgO signals are used to alert the agent to the creation of new
items. A templating mechanism is provided that uses Java classes (here the
auction.Client class) as a schema for items.
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7 Discussion

One of the main benefits of the approach presented in this paper is that it
standardises how to build MAMS-based applications. This has led to a num-
ber of improvements compared against the initial implementation of MAMS as
described in [34]:

— Explicit Modelling of Resources: The original MAMS model maintained an
implicit model of resources whose state was represented within the agents’
beliefs. The approach advocated in this paper models resources explicitly.
A key benefit of this has been the ability to define explicit resource types
(see Table 1), with associated semantics for valid HTTP requests, that are
encoded within the the resource model.

— Support for Extensibility: The implementation of resources is designed to be
extensible and permit the addition of other resource types as is necessary.
This is essential as it permits the development of bespoke resource models
and types. We view the creation of such resources as essential to support the
implementation of concepts such as decentralised trust management [2] and
social reputation [13].

— Use of a Linked Data Model: Linking of resources provides a way for external
systems to discover and navigate complex APIs. Support for this has been
realised through the use of the Hypertext Application Language (HAL) and
through the adoption of agreed standards for representing the specific types
of resource supported in this paper.

— A Cleaner Approach to Resource Management: The original MAMS model
supported only one form of resource management, which was intimately
linked to the agent program. The developer of the program was respon-
sible for handling all HTTP requests. The model presented in this paper
offers a more refined approach, where valid HTTP requests (those that are
permitted for the given resource type) are vetted by the associated agent
(invalid requests are automatically rejected). In this paper, we term this
agent-in-the-loop approach active resource management (see Section 4.3).

— A Passive Resource Management Model: In addition to the active model,
this paper introduces a passive resource management model that separates
agents from resource updates. Instead, agents are passive observers that
monitor their associated resources for changes or who can modify the state
of their resources directly (through internal operations that are equivalent
to those supported by HTTP Requests).

— Language Independence: Finally, a last key advantage of the approach de-
scribed in this paper is that it is agnostic to the agent programming language
used. This has been achieve by focusing on an artifact-based model of virtual
resources that is language independent.

For this project, we chose HAL as the hypermedia resource representation
as it has many beneficial qualities that were suitable for a project such as ours
which is working towards the idea of Hypermedia MAS [4]. HAL enables ease
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of navigation around a set of resources by maintaining a set of links that de-
scribe relationships between individual resources. This lends itself to the idea
of an agent exploring, discovering and reasoning about a given set of resources.
HAL provided us with a very simplistic way of displaying how an agent’s ‘body’
is made up of the virtual resources that it manages. HAL was very useful in
terms of allowing us to showcase our theoretical model in a very simple view,
however, it is not without its limitations. HAL does not support resource meta-
data for describing the semantics of resources and can only specify the media
type expected when de-referencing a linked resource. Additionally, HAL does
not support hypermedia controls other than simple links and so cannot describe
the service-specific semantics of operations on resources.

After reviewing hypermedia APIs, [20] provides a great breakdown of the
state of the art in this field. It describes two main approaches to implementing
hypermedia APIs: a bottom-up approach as well as a top-down approach. Bot-
tom up approaches include HAL as well as the Constrained RESTful Application
Language (CoRAL). As this paper is written from a Web of Things (WoT) per-
spective, both HAL and CoRAL are described as being able to represent both
Things in a WoT context but also to represent complex web resources, which ties
in with our research. Interestingly, CoRAL provides a solution to some of the
shortcomings of HAL in that it supports the representation of simple resource
metadata, as well as providing hypermedia controls by describing operations
that can be performed on resources via forms.

The top-down approaches include the W3C Web of Things Specification that
describes the Thing Description (TD) and a Web Thing Description provided
by Mozilla. The top-down approaches are quite restrictive, insofar as that they
have to represent a ‘thing’ as a cohesive unit of data and functionality. A key
difference between these two approaches from the perspective of this research is
that in the examples of the top-down approaches, any navigation away from that
cohesive unit results in a JSON object that represents data, not another resource.
Based on the working examples provided, there seemed to be no clear navigation
from generated data back to a description of the resource. In contrast, when
navigating the hyperlinks provided in both HAL and CoRAL, one is navigating
between resources, and each resource has its own set of relevant hyperlinks. It is
the expressiveness of the bottom-up approaches that is key to allowing services
and agents to navigate a resource. The top-down approaches, however, support
semantic descriptions of resources using JSON-LD, which provides a level of
context. Additionally, based on the latest draft specification of CoRAL [14], it
also allows for the expressions of simple RDF statements. However, it currently
does not support more extensive representations such as JSON-LD. CoRAL is
still a working draft but is a forerunner for a resource representation that can
represent complex web resources related to this research, as it contains many
key attributes.

There are several positive elements to each of these approaches to imple-
menting hypermedia APIs. However, from the perspective of this research, it
is our view that a combination of these positive elements would be best suited
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as a mechanism for representing resources. Another popular resource that we
believe should be considered when discussing the correct path to choose with
regard to resource representation is the likes of the OpenAPI® specification and
RAML7. These tools are used to build a representation of an API that is both
human and machine-readable, in both JSON and XML. These tools have been
used in industrial contexts in order to provide in-depth descriptions of how to
interact with services with minimal implementation on the consumer side. These
services provide very clear and detailed information on how to interact with a
given resource, including the correct HTTP verb to use. This is very useful from
a RESTful perspective as it allows each resource to define all the HTTP verbs
each resource supports. It is this level of detail that we see being included in
hypermedia resource representation in order to promote autonomous interaction
among services and agents. Understanding which approach is most suitable, or
combination there of, is a key challenge to the evolution of MAMS.

Finally, [15] presents recent work on CArtAgO that exposes artifacts through
a Web API. This contrasts with the work presented in this paper as it focuses
first on simply exposing artifacts and secondly does so as a web API rather than
as REST resources. As discussed in Section 4, the MAMS approach is quite
different to the CArtAgO approach. As a result of using CArtAgO, steps such
as the exposing of an agent’s virtual resource became a much more complicated
process. This is due to the fact that artifacts in the CArtAgO framework are
inherently shared among all the entities in the environment, and in order to
portray the fact that an artifact ‘belonged’ to a given agent, each artifact had
to be linked to the base artifact of each agent. Although using CArtAgO was a
limitation from this perspective, using CArtAgO as an environment framework
allowed us to showcase that MAMS has cross-compatibility with other agent
programming languages and is not tightly-coupled with any particular language.

8 Conclusions

This paper presents a novel approach to the implementation of Multi-Agent Mi-
croServices (MAMS), a model that sits at the intersection between Multi-Agent
Systems and Microservices. The model embraces current industry best practice
and technology stacks and proposes introduces the idea of virtual resources as a
mechanism for facilitating the seamless integration of agents into microservices-
based architectures. Through this, we gain access to a wealth of technologies and
experience in how to deploy systems at scale while at the same time situating
those agents in a larger web-enabled ecosystem.

Future work will seek to address a number of limitations of the model de-
scribed here. This includes some improvements to the underlying architecture,
but more significantly, the decoupling of resources and representations to allow
multiple representations to be returned for a given resource. A main goal of this
research in the near future is to work towards creating a hypermedia resource

5 https://swagger.io/specification/
" https://raml.org/
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representation that can provide semantically enriched navigational cues that de-
scribe possible actions on given resources with enough detail in order to allow for
interaction with minimal implementation on the side of the consumer, a combi-
nation of the solutions discussed in Section 7, from our perspective, associated
with the current working standards. Ultimately, the aim is to support all the
linked data formats described in [20] as well as any others that evolve over time.

A specific target is the implementation of support for JSON-LD [31] repre-
sentations which we intend to use in CONSUS®: a research project that seeks,
in part, to develop multi-agent decision-support tools for smart agriculture.
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