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ABSTRACT
Argument Mining (AM) is a unique task in Natural Language Pro-
cessing (NLP) that targets arguments: a meaningful logical structure
in human language. Since the argument plays a significant role in
the legal field, the interdisciplinary study of AM on legal texts has
significant promise. For years, a pipeline architecture has been used
as the standard paradigm in this area. Although this simplifies the
development and management of AM systems, the connection be-
tween different parts of the pipeline causes inevitable shortcomings
such as cascading error propagation.

This paper presents an alternative perspective of the AM task,
whereby legal documents are represented as graph structures and
the AM task is undertaken as a hybrid approach incorporating
Graph Neural Networks (GNNs), graph augmentation and collec-
tive classification. GNNs have been demonstrated to be an effective
method for representation learning on graphs, and they have been
successfully applied to many other NLP tasks. In contrast to pre-
vious pipeline-based architecture, our approach results in a single
end-to-end classifier for the identification and classification of argu-
mentative text segments. Experiments based on corpora from both
the European Court of Human Rights (ECHR) and the Court of Jus-
tice of the European Union (CJEU) show that our approach achieves
strong results compared to state-of-the-art baselines. Both the graph
augmentation and collective classification steps are shown to im-
prove performance on both datasets when compared to using GNNs
alone.
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• Applied computing→ Law; • Computing methodologies→
Natural language processing.
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1 INTRODUCTION
As a process to express human language in a logical manner [46, 53],
argumentation is an important topic of study for Natural Language
Processing (NLP). One specific NLP topic is Argument Mining (AM),
which is a series of tasks aiming to automatically identify and
analyse arguments as well as their reasoning process from human
language corpora [26, 38, 51]. Considering the multiple applica-
tion scenarios, argument mining has gradually become popular in
interdisciplinary research. Previous AM studies have explored ma-
terials like student essays [1, 48], peer reviews [17], and comments
on online forums [37]. Regarding the key aspect of argumenta-
tion in social and political science [54], AM has been particularly
prominent at the intersection of Artificial Intelligence (AI) and
Law [7, 14, 42, 56]. Specifically, different types of legal documents
have been explored as AM materials including court decisions [14],
clinical trials [30], and judicial decisions [56, 57]. Due to the com-
plexity of argumentation in law, some works focus on mining ar-
gumentation from the logical or rhetorical background [58, 63],
while others emphasise the argumentation from the perspective
of legal professionals [14]. Further usages of AM in the legal field
have also been tested such as tutoring systems [61] and legal text
summarisation [7, 55].

When implementing an AM system for legal documents, most
present works (e.g., [13, 31, 42]) still follow a pipeline architec-
ture [50]. As illustrated in Figure 1, the pipeline architecture is con-
nected by a sequence of sub-tasks: shrink the searching scope in the
raw document at the beginning; identify the text segments as argu-
ment components (i.e., different functional units in argumentation);
classify the argument components (e.g. premise or conclusion); and
predict the argument relations between labelled components. De-
spite the advantages of this approach, [5, 39] suggest that the error
propagation inherent in the AM pipeline architecture is an issue,
which refers to the situation whereby a classification error in a prior
task will have a cascading effect on later tasks. This motivates us to
seek alternative perspectives to the task of modelling the argument
mining process.

The ideal output of a complete AM system is an argument graph
like the one displayed in Figure 2, which represents the extraction
of argumentative structures [25] with the nodes symbolising the
propositions and the edges between them illustrating different re-
lations (e.g., support, attack) [18]. The reasoning process within
the argument graph should match the requirements of an argu-
mentation model [26, 27]. Developed from computational argumen-
tation, the argumentation model represents arguments from the
raw texts into computational structured data. Many argumentation
models can be represented as graphs. This matches the general
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background of graph computational tasks. Meanwhile, graph mod-
els have achieved impressive results in many research fields such
as natural science (e.g., chemistry, physics [4, 19]), social science
(social networks [8]), and knowledge graphs [47]. This inspires us
to view AM as a problem of computational graphs. Considering
that the graph is a powerful data structure that represents a set of
objects (nodes) and their relations (edges), the AM problem can be
abstracted into one end-to-end task, and be calculated by a deriva-
tive model which connects the features of different sentences and
predicts the sentences as argument components [43].

Figure 1: The Argument Mining Pipeline on Legal Text. The
two light grey parts are the input and output of the pipeline.
The two dot-lined sub-tasks within the argument extraction
are connected sequentially.

In this work, we present a new architecture for mining argumen-
tation in legal documents from end to end. Based on graph repre-
sentation learning (i.e., graph networks), our algorithm consists of
collective classification algorithms, text representation models (i.e.,
transformer-based models), and graph structure augmentation. In
contrast to previous works, we redefine the modelling of legal AM
into a graph-based node classification task. Therefore, our architec-
ture encodes each entire legal document as a computational graph
and predicts all argument components simultaneously. We test our
approach with two practical legal document datasets. The primary
contribution of this paper is the proposal of a novel implementation
architecture for the AM task, which replaces the pipeline archi-
tecture with an end-to-end architecture. This is a hybrid method
that combines graph augmentation, collective classification, and
NLP-based models for legal document AM.

Section 2 discusses the context of this work by exploring related
work in the areas of Argument Mining, Graph Structures, Graph
Neural Networks and Collective Classification. Section 3 then out-
lines our proposed approach to AM based on graph representation
learning. Following this, Section 4 presents the datasets used for
our experiments, which are summarises in Section 5. We present
our conclusions and suggestions for future work in Section 6.

Figure 2: Example of Argument Graph Extracted from Plain
Text. The input text is part of a legal document sampled from
a practical corpus. Different parts segmented from the text
are identified as argument components: premises are covered
with light grey; conclusions are underlined. The argument
graph contains both element and relation information in
each argument.

2 RELATEDWORK
2.1 Argument Mining
Due to the fact that the “argument” has more complex and varied
structures in the professional law field compared to daily commu-
nication, in this work, we follow a high-level structure concluded
by the Walton argumentation model [59], one of the typical guid-
ance schemes when annotating AM corpora. Using this structural
argumentation model, one can construct an argument with three
constituents: premises containing evidence or reasons supporting
the argument, conclusions that serve as the stance and centre of the
argument, and the inferences that follow from premises and conclu-
sions. Walton’s model is highly generalisable, making it suitable
for various contexts, such as case law.

The pipeline architecture in Figure 1 treats the AM task as hav-
ing two stages: the argument extraction stage decomposes a long,
complete argument into segments, each of which has a rhetoric
or logical role; the relation prediction task then focuses on mining
the relations between the segments identified from the argument
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extraction in order to retrieve full argumentative structures [31].
The first stage is designed as a classification task in [25, 31]. In the
practical development of AM systems [15, 31, 42, 65], the argument
extraction stage usually comprises a series of sub-tasks: segmenting
original documents into text spans; identifying those text segments
that contain argumentation information (i.e., argument information
detection in Figure 1); and dividing the argumentative segments into
groups based on the argumentationmodel (i.e., argument component
classification in Figure 1). Current designs for legal text AM com-
monly follow this pipeline architecture, which is attractive from the
point of view of project management and separation of concerns,
but also has obvious drawbacks: the sub-tasks are solved indepen-
dently without utilising interrelationships between variables [6];
the connection between each part leads to the error propagation
problem in the evaluation process [39, 65].

The inter-dependency between sub-tasks [24] within the pipeline
has led to the study of multi-objective learning, where all sub-tasks
are learned and performed simultaneously using end-to-end ap-
proaches. [16] created a joint inference method for AM on debating
texts. [10] viewed AM as a multi-objective learning task and applied
residual networks on user comments. [32] designed a parallel con-
strained pointer architecture for AM tasks on online civic discussion
and persuasive essays.

An alternative point of view is framing AM as a dependency
parsing task. When approached in this way, the AM tasks usually in-
volve token-level sequence tagging and elaborate post-processing
for argumentative structure extraction. [6] first considered AM
as a token-based multi-task problem of dependency parsing and
sequence tagging. Based on this, [65] developed biaffine neural
models for AM on persuasive essays. [33] experimented with a
joint learning framework on sentence-level AM with multiple tasks
of component classification, relation detection and relation classi-
fication. In [45], they developed an end-to-end argument parser,
leveraging the intrinsic relationship between discourse units (ar-
gument components) and operating at two levels of granularity:
tokens and discourse units. Due to the specific characteristics of
legal documents (i.e., strict formatting, long, and complex), when
applying AM, current studies still heavily rely on the pipeline. To
ultimately implement the end-to-end legal AM solution, we explore
AM in terms of the graph, which is introduced in Section 3.

2.2 Graph Structures
In leveraging graph data structures to represent legal text docu-
ments, this work follows the graph definition and notation from [29,
62]. For convenience, all the notation used in this paper are outlined
in Table 1. A graph is denoted as 𝐺 = (𝑉 , 𝐸), where 𝑉 represents
a set of nodes (also described as “vertices”) and 𝐸 represents a set
of edges (i.e. connections between nodes). The neighbourhood of
a node 𝑣 is defined as 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}. To represent
existing edges, each graph has an adjacency matrix 𝐴 ∈ R𝑛×𝑛
where 𝑛 = |𝑉 | is the number of nodes. A graph may have node
attributes and edge attributes. 𝑋 ∈ R𝑛×𝑑 is the node feature matrix
with 𝑥𝑣 ∈ R𝑑 representing the node feature, and 𝑋𝑒 ∈ R𝑚×𝑐 is
the edge feature matrix with 𝑥𝑒(𝑣,𝑢 ) ∈ R

𝑐 representing the feature
vector of an edge (𝑣,𝑢) pointing from node 𝑣 to node 𝑢. A di-
rected graph is a graph with all edges directed from one node to

Table 1: Notations used in this paper.

Notation Descriptions

𝐺 A graph.
𝑉 The set of nodes in a graph.
𝑣 A node 𝑣 ∈ 𝑉 .
𝐸 The set of edges in a graph.
𝑒𝑖 𝑗 An edge 𝑒𝑖 𝑗 ∈ 𝐸.
𝑁 (𝑣) The neighbourhood nodes of a node 𝑣 .
𝐴 The graph adjacency matrix
𝑛 The number of nodes, 𝑛 = |𝑉 |.
𝑚 The number of edges,𝑚 = |𝐸 |.
𝑑 The dimension of a node feature vector.
𝑏 The dimension of a hidden node feature vector.
𝑐 The dimension of an edge feature vector.
𝑋 ∈ R𝑛×𝑑 The node feature matrix of a graph.
𝑥𝑣 ∈ R𝑑 The feature vector of the node 𝑣 .
𝑋𝑒 ∈ R𝑚×𝑐 The edge feature matrix of a graph.
𝑥𝑒(𝑣,𝑢 ) ∈ R

𝑐 The edge feature vector of an edge (𝑣,𝑢).
𝐻 ∈ R𝑛×𝑏 The hidden node feature matrix of a graph.
ℎ𝑣 ∈ R𝑏 The hidden feature vector of the node 𝑣 .
𝑌 The set of node labels.
𝑦𝑣 ∈ 𝑌 The label of the node 𝑣 .
𝑧𝑣 The neighbourhood labels’ summary of node 𝑣 .
𝑘 The layer index.
𝑡 The time step/iteration index.
□(·) A differentiable, permutation invariant function.
𝛾 (·), 𝜙 (·) Differentiable functions.
𝑆 (·) The label summary function.
𝑓 (·) The classifier model.

another. An undirected graph is a special case where all edges are
bidirectional [62].

2.3 Graph Neural Networks (GNNs)
Inspired by the success of neural network models like Convolu-
tional Neural Networks (CNNs) in deep learning methods, Graph
Neural Networks (GNNs) are a type of neural model that can be
applied directly to graph data structures to make inferences on
data provided in a graph while simplifying the performance of pre-
diction tasks [29]. GNNs capture the dependencies within graphs
via message passing between the graph nodes [69]. Message pass-
ing is the generalised convolution operator in GNNs, which is a
neighbourhood aggregation scheme described as in this equation:

𝑥
(𝑘 )
𝑣 = 𝛾𝑘 (𝑥 (𝑘−1)𝑣 ,□𝑢∈𝑁 (𝑣)𝜙

(𝑘 ) (𝑥 (𝑘−1)𝑣 , 𝑥
(𝑘−1)
𝑢 , 𝑥𝑒(𝑣,𝑢 ) ))

where 𝑥 (𝑘−1)𝑣 denotes node features of node 𝑣 in layer 𝑘 − 1, 𝑁 (𝑣)
is the neighbourhood nodes of node 𝑣 . □ denotes a differentiable,
permutation invariant function (e.g., sum, mean, or max), 𝛾 and 𝜙
denote differentiable functions (e.g., Multi-Layer Perceptrons).

A basic implementation of message passing is the Graph Con-
volutional Network (GCN) [20], which is one of the popular basic
modules when designing GNNs. During its neighbourhood aggre-
gation, the GCN operator first transforms node features using a
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weight matrix, then normalised them by their degree, before apply-
ing the bias vector to the aggregated output. Compared to GCN,
the Residual Gated Graph ConvNet (ResGCN) from [2] extends the
message passing by adapting both the residual network and the
gated recurrent units (GRU), which achieves positive results [3].

Due to its strong performance, GNNs have been used to solve
various NLP tasks including text classification: [64] designed a two-
layer GCN on a heterogeneous text graph with word nodes and
document nodes; [36] applied GNN for multi-class label text classi-
fication; [52] used a GCN architecture for short text classification.
As for tasks related to AM, before GNNs were adopted, some works
applied graph-based methods for argument structure analysis and
argument evaluation. The argumentation structure in scientific
publications was studied through annotations in [21]. Different
annotation graphs were compared using a graph-based agreement
measure. Similarly, to automatically review issues within a debate,
[22] proposed a graph-based analytic method that uses operational
and measurable properties representing networks of arguments.
Yet, few studies to date have attempted to test the potential of GNNs
on tasks related to AM. In [43], they explored the classification per-
formance of GNNs with Tree Kernels on a group of text sampled
from AM corpora. Inspired by AM, [44] applied a graph-based net-
work for automatic debate evaluation. The idea behind our work is
mostly close to [40], which tried to extract a graph from a document
using textual fragments as vertices. [40] applied an unsupervised
graph-based ranking model, which attempted to discover whether
there is an overlap between approaches used in summarisation and
AM tasks. However, none of these included legal documents as their
AM material.

2.4 Collective Classification
As mentioned in Section 2.1, a major focus in AM research is to
solve the problem as a series of individual classification tasks. Due
to the argumentative structure in the textual material, the pre-
diction variants in these classification tasks, are interrelated in
many aspects [6]. For example, [11] suggests that the distance be-
tween two argument components is a relevant feature for argument
mining. This property of AM is different from the assumptions of
independence and identical distribution that are associated with
general machine learning, but matches the collective classification
case where it can be beneficial to improve the prediction process
if the correct class labels are known for the items being related.
Unlike classification methods that treat each item in isolation and
predict the class label individually, collective classification meth-
ods aim to solve the classification problem in a joint or collective
manner. Given a set of nodes 𝑉 , and the neighbourhood function
𝑁 , in collective classification 𝑉 is further divided into two sets:
𝑉𝑘𝑛𝑜𝑤𝑛 , the nodes with labels (observed variables) and, 𝑉𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ,
the nodes whose values remain unknown. The task is to label the
nodes 𝑣 ∈ 𝑉𝑢𝑛𝑘𝑛𝑜𝑤𝑛 with one of the predefined labels in 𝑌 .

According to [34], collective classification approaches can be
considered to fall into one of two groups: a) approaches focusing
on local representations and propagation methods such as Iterative
Classification Algorithm, and Relation Classification; b) approaches
representing the problem with a high-level global graphical rep-
resentation and then applying learning and inference techniques

(i.e., Graph-based Models). In contrast to traditional classification,
relational classification classifies the instance using not only the
instance’s own attributes but also the attribute of that instance’s
neighbour [49]. Another method, iterative classification algorithm
(ICA) [35] uses the class labels assigned to the neighbour instead of
the neighbour’s attributes for classifying the instance. In addition,
collective classification with graph-based models [12, 23] represents
the entire problem using a global graph-based model and is gen-
erally able to apply both neighbourhood labels and the observed
attributes of neighbours.

Inspired by the ICA in collective classification, we considered
how collective classification can be applied in legal AM and de-
signed our novel graph-based collective classification method ac-
cording to it. This is discussed in the following section.

3 GRAPH-BASED ARGUMENT MINING
Here we introduce our graph-based architecture for mining argu-
ments from the complex context of legal documents. This section
includes three parts: 1) the graph-based solution for text AM which
represents the problem with a high-level global model; 2) the graph
augmentation used in our AM approach; 3) the collective classifica-
tion algorithm we have designed for graph-based AM.

3.1 Modelling AM as a Graph-based Task
In contrast to the text sequence in the previous AM pipeline, we
first express the text material as a graph structure, in order to apply
the GNN model for classification. For each input text, we construct
a sentence-level graph 𝐺 . Each node in the graph 𝑣 ∈ 𝑉 is a text
segment with feature 𝑥𝑣 encoded by the transformer model (i.e.,
the node feature is an embedding of the text segment it represents)
as well as a node label 𝑦𝑣 ∈ 𝑌 , where 𝑌 denotes the argument
component annotations (i.e., “premise”, “conclusion”, and “neither”).
We then add the edges 𝐸, based on the order of the text segments
within the document (i.e., from the first segment to the second
segment, etc.), and connect the final segment’s node back to the
first segment’s node. According to the graph structure, the first
stage in AM (see Section 3) is now able to be computed as a node-
level classification task.

3.2 Graph Structure Augmentation
The nature of the graph representation above is such that each
document is operationally represented by a cycle graph. In travers-
ing the graph, each text segment can be reached only from the
edges connecting it to the segments that immediately precede or
follow it. In legal texts, however, related argumentative clauses
can frequently be spread throughout quite a long document, and
as such the cycle graph structure limits the degree to which any
graph traversal algorithm can consider related clauses that are not
adjacent. Additionally, this approach results in a sparse adjacency
matrix. To address these issues, we augment the graphs by adding
virtual nodes. This is an augmentation method for attributed graphs
from [41] which can increase the number of edges and allow re-
lationships between non-adjacent text segments to be explored.
For each graph, the virtual node is bidirectionally connected to all
existing nodes as illustrated in Figure 3, and represents the latent
aspects of the graph. We initialise the virtual node’s feature with
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the average of existing text nodes’ attributes during the message
passing in graph representation learning. The virtual node’s label
is fixed and does not participate in the evaluation.

Figure 3: The Virtual Node Graph Augmentation Method.
The input text document is first represented as a computa-
tional graph, in which the nodes are labelled based on their
sequence within the document (A, B, C, etc.). The virtual
node added in the graph structure is in dark grey.

3.3 Collective Classification with AM
Regarding the characteristics of argumentation, it is important
to take context into account when identifying argumentative rela-
tions. The argument components in argumentative texts are related,
which we assume matches the collective classification hypothesis
(see Section 2.4). During our research of collective classification
methods, the classic ICA inspired us to use the label information
from the node’s neighbourhood and to optimise the prediction re-
sult through iterative updates. Then we moved further with the
collective graph-based models, as we modelled the AM problem in
a new graph-based structure. Combining the ideas from both ICA
and graph representation learning, we designed the graph-based
collective classification algorithm (GCA).

Algorithm 1 depicts our algorithm as pseudo-code, which in-
cludes both the training and testing processes. A set of documents
are represented as a set of graphs G = {𝐺 : 𝐺 = (𝑉 , 𝐸)} and its
neighbourhood function 𝑁 , which is as defined in Section 2.2. The
text graphs G are further divided into two sets: G𝑡𝑟𝑎𝑖𝑛 = {𝐺 :
𝐺 = (𝑉𝑡𝑟𝑎𝑖𝑛, 𝐸𝑡𝑟𝑎𝑖𝑛)} and G𝑡𝑒𝑠𝑡 = {𝐺 : 𝐺 = (𝑉𝑡𝑒𝑠𝑡 , 𝐸𝑡𝑒𝑠𝑡 )}, where
G𝑡𝑟𝑎𝑖𝑛 ⊂ G, G𝑡𝑒𝑠𝑡 ⊂ G, and G𝑡𝑟𝑎𝑖𝑛 ∩ G𝑡𝑒𝑠𝑡 = ∅. 𝑉𝑡𝑟𝑎𝑖𝑛 represents
nodes with correct labels, and 𝑉𝑡𝑒𝑠𝑡 are nodes whose labels need to
be determined. Our task, as mentioned in Section 3.1, is to label all
nodes 𝑣 ∈ 𝑉𝑡𝑒𝑠𝑡 with one of the labels 𝑦𝑣 ∈ 𝑌 .

To begin with, two classifiers 𝑓1 and 𝑓2 are initialised, which are
graph neural networks. The classifier 𝑓1 first focuses on predict-
ing the labels of nodes in the training set 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛 , using only
the node feature 𝑥𝑣 . The classifier 𝑓1 is updated for 𝑡1 time steps.
Then, the classifier 𝑓2 predicts the label 𝑦𝑣 of the node 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛
based on both the node’s representation vector ℎ𝑣 generated by
𝑓1 and the neighbourhood labels’ summary 𝑧𝑣 computed through
aggregation function 𝑆 . Using all the neighbour nodes 𝑢 ∈ 𝑁𝑣 , the
neighbourhood labels’ summary 𝑧𝑣 is aggregated based on the label

Algorithm 1: Iterative Collective Classification on Graphs
1 initialise neural network classifiers 𝑓1, 𝑓2;
2 repeat
3 repeat
4 for node 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛 do
5 compute node representation vector and label
6 ℎ𝑣, 𝑦𝑣 ← 𝑓1 (𝑥𝑣);
7 end
8 update classifier 𝑓1;
9 until 𝑡1 iterations;

10 repeat
11 for node 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛 do
12 compute 𝑧𝑣 using neighbourhood aggregation
13 𝑧𝑣 ← 𝑆𝑢∈𝑁 (𝑣)𝑦𝑢 ;
14 compute label using vector ℎ𝑣 and summary 𝑧𝑣
15 𝑦𝑣 ← 𝑓2 (ℎ𝑣, 𝑧𝑣);
16 end
17 update classifier 𝑓2;
18 until 𝑡2 iterations;
19 until a threshold number of training iterations have elapsed;
20 fix the neural network classifier 𝑓1 and 𝑓2;
21 for node 𝑣 ∈ 𝑉𝑡𝑒𝑠𝑡 do
22 compute node representation vector and label
23 ℎ𝑣, 𝑦𝑣 ← 𝑓1 (𝑥𝑣);
24 compute summary 𝑧𝑣 using the aggregation
25 𝑧𝑣 ← 𝑆𝑢∈𝑁 (𝑣)𝑦𝑢 ;
26 compute label using vector ℎ𝑣 and summary 𝑧𝑣
27 𝑦𝑣 ← 𝑓2 (ℎ𝑣, 𝑧𝑣);
28 repeat
29 update summary 𝑧𝑣 using the aggregation
30 𝑧𝑣 ← 𝑆𝑢∈𝑁 (𝑣)𝑦𝑢 ;
31 update final label using vector ℎ𝑣 and summary 𝑧𝑣
32 𝑦𝑣 ← 𝑓2 (ℎ𝑣, 𝑧𝑣);
33 until 𝑡3 iterations;
34 end

𝑦𝑢 predicted by the first classifier 𝑓1. The classifier 𝑓2 is updated for
𝑡2 time steps.

After a threshold number of training iterations, we fix both
classifiers 𝑓1 and 𝑓2 before applying them to the test set G𝑡𝑒𝑠𝑡 .
Using only the node feature 𝑥𝑣 , each node 𝑣 ∈ 𝑉𝑡𝑒𝑠𝑡 is assigned
a pseudo-label 𝑦𝑣 predicted by classifier 𝑓1. Next, the classifier 𝑓2
takes both the hidden representation ℎ𝑣 given by 𝑓1 as well as the
pseudo-label summary 𝑧𝑣 from the neighbourhood 𝑁𝑣 and returns
a label𝑦𝑣 for each node 𝑣 . Similar to ICA, our algorithm includes the
iterative updates of the neighbourhood label summary 𝑧𝑣 , and the
node label 𝑦𝑣 for each node 𝑣 until this process reaches a threshold
number 𝑡3 of times.

Note that in the algorithm, 𝑦𝑣 denotes the label of node 𝑣 , which
refers to a likelihood value vector of the corresponding label in
practice. The algorithm is presented generically, and is intended to
be generalisable for different methods of embedding nodes, different
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Table 2: Datasets for Graph-based Argument Mining. ECHR
= the European Court of Human Rights, CJEU = the Court
of Justice of the Europan Union, doc = document number,
word = word number, graph = graph number, node = node
number, pre = premise component number, con = conclusion
component number.

Dataset doc word graph node pre con

ECHR 42 290K 40 10,354 1,935 734
CJEU 40 346K 40 9,320 2,375 160

iteration thresholds, different aggregation functions, etc. Specific
examples are presented in our experiment description in Section 5.

4 LEGAL DOCUMENTS AND
ARGUMENTATION MINING DATASETS

During the development of AM research, several datasets have been
curated, focusing on different application domains for AM [67].
For the crucial role played by arguments in the legal field, our
study focuses on measuring how our graph-based AM structure
works on legal documents. Two English text datasets are used for
our experiment, both of which are generated from real-life legal
professional corpora.

The first dataset,ECHR1, developed from awell-known resource
used in the research area of AI and Law, the online database HU-
DOC2 managed by the European Court of Human Rights (ECHR)
has been used in AM studies for years [31]. The original file from
HUDOC follows a standard format of sections: each document
starts with the introduction of the court and the parties involved
in the case; then it provides the procedure and facts of the case;
next, it includes the discussions and arguments presented by both
parties, and finally the judgment of the court is presented. The
ECHR corpus [42] contains 42 case-law documents: 20 decisions
(3.5K words on average), and 22 judgments (10K words on aver-
age). The ECHR dataset follows a sentence-level annotation scheme
where each sentence was labelled as premise, conclusion, or non-
argumentative based on Walton’s argumentation model [59] (as
described in Section 2.1).

The second dataset, Demosthenes3, consists of 40 documents
(346K words) from the EUR-Lex database4. Since the original files
are decisions on Fiscal State Aid made by the Court of Justice of the
European Union (CJEU), in this work we use CJEU to refer to this
dataset. This dataset has been recently annotated for the purpose of
AM [13] because the CJEU decisions include sufficient and diverse
legal arguments. In a similar way to the ECHR cases, the CJEU
decision files are structured in a consistent format. Each source file
starts with the information of both parties and the Court; it includes
case background of facts and procedural case history before the
assessment of the General Court. Next, it reports the grounds of
appeal containing the arguments of the parties and the findings
of the court. Finally, it presents the ruling decision and orders to

1https://www.di.uevora.pt/~pq/echr/
2https://hudoc.echr.coe.int/
3https://github.com/adele-project/demosthenes
4https://data.europa.eu/data/datasets/eur-lex-statistics?locale=en

the parties. When developing the CJEU dataset, the annotators
focused on the sections of Findings of the Court, which includes all
argumentative steps in the Court reasoning process leading to the
final ruling. This section consists of a set of interacting inferences,
each of which links a set of premises to a conclusion through support
or attack relations. Based on this characteristic of inference in
the documents, the annotation in the CJEU corpus include further
information on premise types and argumentation schemes.

Both datasets are annotated by legal experts and use sentence-
level segmentation for argument components. The argument com-
ponent type (i.e., premise, and conclusion) in both annotation
schemes generally follow the Walton model as mentioned in Sec-
tion 2.1. Detailed information on the properties of the experiment
datasets is concluded in Table 2.

5 EXPERIMENTS
In this work, we tested the complete argument extraction stage (see
Section 2.1) in AM, where the related text segments are identified
from the documents and classified into argumentative components.
The input text is first encoded into computational graphs as de-
scribed in Section 3.1, then applied with the graph-based collective
classification algorithm (Section 3.3). As part of the experiment, we
test model combinations of different GNNs on both legal document
datasets.

5.1 Experimental Setting
When encoding the English text into the graph structure, we use
text embeddings as the feature 𝑥𝑣 for each node 𝑣 . While several
options are available to choose from [60], to align with previous
AM studies [42, 66, 68], the text embeddings chosen were those
generated by the RoBERTa transformer [28]. Through the final
pooling layer, each text segment was expressed as a vector that was
further calculated as the node feature. The edges 𝐸 in the computa-
tional graph were generated following the process mentioned in
Section 3.1. One virtual node was added per graph to augment the
graph adjacency matrix, which linked to all the existing nodes with
undirected edges (see Section 3.2). The virtual node’s feature is the
average of all existing nodes’ embeddings. Its label is fixed as “not
argumentative” during both the training and testing process but is
not counted during evaluation.

5.2 Model Implementation
We built two GNN classification models individually using GCN
layers and ResGCN layers (both are introduced in Section 2.3).
Based on its message passing operator, we named them 𝐺𝐶𝑁 and
𝑅𝑒𝑠𝐺𝐶𝑁 . When implementing the classifiers 𝑓1, and 𝑓2 in Algo-
rithm 1 from Section 3.3, we follow the general GNN structure. Our
GNN-based classifier therefore contains two graph neural layers,
which compute the hidden node representations, and a final linear
layer, which pools the node representations into the label prediction
vector. The GNN models are implemented based on PyTorch Geo-
metric (PyG) [9]. The 𝑓1 model consists of two 400-neuron layers,
and the 𝑓2 model consists of two 64-neuron layers. The 𝑓1 model cal-
culates the node hidden representative ℎ𝑣 (dim=400) and the node
label 𝑦𝑣 (dim=3) based on the embedding stored as the node feature
𝑥𝑣 (dim=768). For our experiment, we use 𝑠𝑢𝑚 as the aggregation

https://www.di.uevora.pt/~pq/echr/
https://hudoc.echr.coe.int/
https://github.com/adele-project/demosthenes
https://data.europa.eu/data/datasets/eur-lex-statistics?locale=en


Argument Mining with Graph Representation Learning ICAIL 2023, June 19-23, 2023, Braga, Portugal

function 𝑆 , and constrain hop=1 in the neighbourhood function 𝑁 .
The virtual node is excluded from the neighbouring nodes’ label
summary 𝑧𝑣 . The 𝑓2 model then takes the concatenation of both
vectors, node representation ℎ𝑣 , and the summary vector 𝑧𝑣 , as
input (dim=403) to make the final node label prediction 𝑦𝑣 .

In each training epoch, heuristically, the iteration step 𝑡1 is 10,
and the iteration step 𝑡2 is 20. During testing, 𝑓1 predicts the label
once and the iteration threshold 𝑡3 for 𝑓2 remains 20. To compare
with the iterative collective classifiers (i.e., 𝑓1, and 𝑓2), we set another
two 𝐺𝐶𝑁 and 𝑅𝑒𝑠𝐺𝐶𝑁 models, with the same structure of two
graph neural layers (196 neurons) and a final liner layer. We trained
GCN-based models for 1000 epochs and ResGCN-based models for
500 epochs. For each classifier, we used Adam optimiser (lr=1e-5),
and with graph batch size=4 on both ECHR and CJEU datasets.

5.3 Evaluation
For both legal document datasets, CJEU and ECHR, we follow the
evaluation process in the original works [13, 42] and ran a 5-fold
cross-validation (training set=32 documents, test set=8 documents).
In each fold, 6 documents were randomly selected from the training
set for validation. For all experiments, the model with the best
macro F1-score on the validation set was selected and applied to
the test set.

Although previous studies of AM on legal text have tended to fol-
low the pipeline design [42], the prediction results of the argument
extraction stage presented in their works are not end-to-end. In
particular, before the argument component classification sub-task,
it is assumed that all of the argument text segments have been
successfully identified from the previous argument information
detection sub-task, which avoids error propagation and allows the
individual pipeline components to be evaluated separately. How-
ever, in the absence of an end-to-end evaluation metric, it is not
possible to perform a direct comparison with our non-pipeline ap-
proach. As such, we reproduced the pipeline architecture following
the guidance in [42]. The two RoBERTa models were individually
fine-tuned (epoch=10) on each binary classification sub-task to be
the same as [15, 42]. After the fine-tuning, both models’ parameters
were fixed when being connected as the pipeline: the first trans-
former divided the text segments into argument/non-argument
groups; the second transformer then labelled the argumentative
segments that were identified by the first model into argument
component groups (i.e., premise/conclusion). We use this pipeline
as the baseline for our experiments on the ECHR dataset. For the
CJEU dataset, [13] tested different combinations of embeddings
and ML classifiers, where they achieved the best result by using
TF-IDF and Linear Support Vector Classification (SVM). We use
their state-of-the-art result as the baseline for the experiments on
CJEU. For each dataset, we report the results obtained by the GNN
models, which contain the F1-score for each argument component
label and the average classification result.

5.4 Results and Discussion
As displayed in Table 3, when doing argument extraction on the
ECHR dataset, the graph-based collective classification algorithm
improved the performance of 𝑅𝑒𝑠𝐺𝐶𝑁 models. The average F1-
score of 𝑅𝑒𝑠𝐺𝐶𝑁 in the general classification process is surpassed

Table 3: Detailed F1-score results on ECHR. CA = Collec-
tive Classification Algorithm (GCA = Graph-based Collective
Classification Algorithm), GS = Graph Structure (N = Normal
Graph, V = Virtual Node Graph), avg = macro F1-score, pre =
premise, con = conclusion, not = not argumentative

Model CA GS avg pre con not

RoBERTa Pipe - - 0.635 0.551 0.467 0.887
𝐺𝐶𝑁 - N 0.478 0.459 0.102 0.873
𝑅𝑒𝑠𝐺𝐶𝑁 - N 0.540 0.442 0.309 0.868
𝐺𝐶𝑁 - V 0.516 0.410 0.274 0.864
𝑅𝑒𝑠𝐺𝐶𝑁 - V 0.554 0.458 0.357 0.847
𝐺𝐶𝑁 GCA N 0.463 0.512 0.005 0.871
𝑅𝑒𝑠𝐺𝐶𝑁 GCA N 0.594 0.571 0.326 0.884
𝐺𝐶𝑁 GCA V 0.562 0.565 0.234 0.886
𝑅𝑒𝑠𝐺𝐶𝑁 GCA V 0.618 0.588 0.376 0.891

both on general graphs (0.540 vs. 0.594) and augmented graphs
(0.554 vs. 0.618). The𝐺𝐶𝑁 classifier also achieved better prediction
results on augmented graphs with the iteration algorithm, whose
average F1-score raised from 0.516 to 0.562. It has less effect on
𝐺𝐶𝑁 models when applied to graphs without augmentation, which
we suggest is due to the sparse graph structure not being suitable for
message aggregation through neighbouring nodes. Considering the
graph structure, the 𝐺𝐶𝑁 model’s performance was improved sub-
stantially with the virtual node graph augmentation, whose average
F1-score increased from 0.478 to 0.516 with the general classifica-
tion process, and from 0.463 to 0.562 when applied with the iterative
collective algorithm. Similarly, when using the 𝑅𝑒𝑠𝐺𝐶𝑁 model as
the classifier, the enhancement given by virtual nodes raises its
average F1-score both in the general process (0.540 vs. 0.554) and
in the collective process (0.594 vs. 0.618). The virtual node augmen-
tation enhanced the 𝑅𝑒𝑠𝐺𝐶𝑁 model’s prediction result from 0.594
to 0.618 (average F1-score) during iterative classification, which
is quite close compared to the best average F1-score remaining
by the baseline (0.635). Taking each argument component group
into account, the graph-based collective algorithm improves both
groups of GNNs’ prediction result on premise overall: 𝑅𝑒𝑠𝐺𝐶𝑁
model achieved better F1-scores than the RoBERTa baseline on
the general graph structure (0.571 vs. 0.551) and the augmented
graph structure (0.588 vs. 0.551); The precision F1-score presented
by 𝐺𝐶𝑁 model increased 10% on average. The 𝑅𝑒𝑠𝐺𝐶𝑁 models
also reached the best result on the non-argumentative texts (0.891),
when applied to virtual node graphs.

Table 4 shows the results of the experiment on the CJEU dataset.
Here, both groups of GNNmodels display higher results on this task
with the collective algorithm. In particular, 𝐺𝐶𝑁 model’s average
F1-score raised over 8% (from 0.664 to 0.718) after using the collec-
tive classification algorithm, when applied on the augmented graph
structure; 𝑅𝑒𝑠𝐺𝐶𝑁 model’s average F1-score increased 3% (from
0.655 to 0.683) when applied on basic graph structure. Echoing
results on the ECHR dataset, the graph augmentation effect given
by virtual nodes is clear on GNN models for the CJEU dataset also.
In particular, when using the𝐺𝐶𝑁 classifier, its average F1-score
raised from 0.531 to 0.664 during the general classification process,
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Table 4: Detailed F1-score results on CJEU. CA = Collective
Classification Algorithm (GCA = Graph-based Collective
Classification Algorithm), GS = Graph Structure (N = Normal
Graph, V = Virtual Node Graph), avg = macro F1-score, pre =
premise, con = conclusion, not = not argumentative

Model CA GS avg pre con not

tf-idf+SVM [13] - - 0.700 0.650 0.580 0.880
𝐺𝐶𝑁 - N 0.531 0.649 0.063 0.881
𝑅𝑒𝑠𝐺𝐶𝑁 - N 0.655 0.546 0.559 0.858
𝐺𝐶𝑁 - V 0.664 0.555 0.575 0.862
𝑅𝑒𝑠𝐺𝐶𝑁 - V 0.722 0.661 0.621 0.882
𝐺𝐶𝑁 GCA N 0.542 0.693 0.051 0.883
𝑅𝑒𝑠𝐺𝐶𝑁 GCA N 0.683 0.747 0.386 0.914
𝐺𝐶𝑁 GCA V 0.718 0.690 0.593 0.870
𝑅𝑒𝑠𝐺𝐶𝑁 GCA V 0.758 0.709 0.677 0.888

and from 0.542 to 0.718 during the iterative collective process. The
average score of 𝑅𝑒𝑠𝐺𝐶𝑁 was also boosted from 0.655 to 0.722
during its general classification process. Compared to the baseline
given by TF-IDF and SVM, the 𝑅𝑒𝑠𝐺𝐶𝑁 model reached its highest
average F1-score (0.758) and maintained a strong performance even
without the graph augmentation, which reached the highest aver-
age F1-score on two argument component groups. Adding virtual
nodes in sparse graphs helps the GNNmodels to predict conclusions
in the CJEU dataset. It largely improves the 𝐺𝐶𝑁 model’s perfor-
mance, and supports the 𝑅𝑒𝑠𝐺𝐶𝑁 model reaching higher results
(0.621 and 0.677, with and without collective algorithm) than the
baseline (0.580). This graph augmentation also slightly improves
the prediction result of the 𝑅𝑒𝑠𝐺𝐶𝑁 model on not argumentative
text segments. Similar to the previous experiments on ECHR, the
collective classification process retains its improvement on GNNs
when identifying premises. By using the iterative algorithm, both
𝐺𝐶𝑁 and 𝑅𝑒𝑠𝐺𝐶𝑁 models surpass the baseline (0.650) around 4%
and 10% in each case at the task of identifying premises.

In general, it is clear that the virtual node graph augmentation
increases the performance of GNN models in most cases. Especially,
the 𝐺𝐶𝑁 model achieved sufficient improvement when predicting
“conclusion” texts on graphswith virtual nodes in both legal corpora.
The collective classification algorithm enhances 𝑅𝑒𝑠𝐺𝐶𝑁 and𝐺𝐶𝑁
have advanced results when predicting the “premise” and “not
argumentative” nodes among all graph sets. When combined with
virtual node graphs, the collective classification generally amplifies
the prediction ability of GNN models. Also, the 𝑅𝑒𝑠𝐺𝐶𝑁 model
exceeds the 𝐺𝐶𝑁 model on larger graphs generated by long text
materials (i.e., legal documents).

6 CONCLUSION AND FUTUREWORK
In this paper, we explore the potential of viewing AM from the an-
gle of a graph-based data structure. Accordingly, we present a new
architecture for mining arguments from text files in the legal field,
where an entire document is encoded as a computational graph.
We proposed a method that combines representation learning, col-
lective classification and graph augmentation. Several conclusions
can be drawn from the evaluation results: it has been possible to

state that our graph-based solution performed better than the pre-
vious pipeline architecture with connected sub-tasks that approach
argument component identification sequentially. Given the obser-
vation from our experiments, the GNN model with gate operator
(i.e., ResGCN) provides great performance on graph-structured data
generated from long legal texts. Besides, when encoding document
graphs for AM, the graph augmentation method (i.e., adding virtual
nodes) adds benefit in most cases. Therefore, when implementing
an AM system, graph models could be used as a powerful tool in
complex long contexts like legal documents. In our view, this work
not only provides methods that yield better performance but also
offers a different option for researchers when studying the AM
problem.

In spite of this, much study remains to be done, and a number of
aspects are still unknown. For future work, our graph-based struc-
ture has anticipated merging the relation prediction stage in order
to transform the previous pipeline into a multi-objective end-to-end
AM system. Since graph augmentation provides effective enhance-
ment, it may be worth studying the relationship between graph
augmentation and the document graph. The current approach adds
a single virtual node that connects to all document nodes. Alterna-
tive combinations of multiple virtual nodes that are more strate-
gically connected to subsets of the document nodes may amplify
the enhancement effect. Another major part of our future work
will focus on creating more complex graph structures, including
incorporating semantic information in our graph representation.
Furthermore, we also plan to study recurrent/recursive architec-
tures on linear graphs. Besides, reducing the time complexity of the
current classification algorithm is able to improve the efficiency of
the AM training process. Furthermore, we plan to explore the edge
attributions in the computational graph as well as the variants of
GNNs that have performed well on NLP tasks.
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